পাইথাগোরিয়ান ত্রিভুজ স্ট্যাকিং


23

পটভূমি

পাইথাগোরিয়ান ত্রিভুজ একটি ডান ত্রিভুজ যেখানে প্রতিটি পাশের দৈর্ঘ্য একটি পূর্ণসংখ্যা হয় (অর্থাত্ পাশের দৈর্ঘ্যটি পাইথাগোরিয়ান ট্রিপল গঠন করে ):

পাইথাগোরিয়ান ত্রিভুজ

এই ত্রিভুজের দিকগুলি ব্যবহার করে, আমরা নীচে আরও দুটি অ-সংগৃহীত পাইথাগোরিয়ান ত্রিভুজ সংযুক্ত করতে পারি:

ত্রিভুজ স্ট্যাক 1

আমরা যথাযথ দেখতে দেখতে এই প্যাটার্নটি দিয়ে চালিয়ে যেতে পারি, যতক্ষণ না দুটি ত্রিভুজ ওভারল্যাপ হয় না এবং সংযোগকারী পক্ষগুলির সমান দৈর্ঘ্য থাকে না:

এখানে চিত্র বর্ণনা লিখুন

প্রশ্নটি হল, কতগুলি অ-সংগৃহীত পাইথাগোরিয়ান ত্রিভুজ আমরা একটি নির্দিষ্ট জায়গায় ফিট করতে পারি?

ইনপুট

আপনি ইনপুট হিসাবে দুটি পূর্ণসংখ্যা Wএবং Hফাংশন আর্গুমেন্টের মাধ্যমে, STDIN, স্ট্রিংগুলি বা আপনার পছন্দসই হিসাবে পাবেন । পূর্ণসংখ্যা দশমিক, হেক্সাডেসিমাল, বাইনারি, ইউনিারি (শুভকামনা, রেটিনা ), বা অন্য কোনও পূর্ণসংখ্যার ভিত্তি হিসাবে প্রাপ্ত হতে পারে । আপনি এটা ধরে নিতে পারেন max(W, H) <= 2^15 - 1

আউটপুট

আপনার প্রোগ্রাম বা ফাংশনটিতে অ-ওভারল্যাপিং সংযুক্ত নন-সম্মিলিত পাইথাগোরিয়ান ত্রিভুজগুলির একটি তালিকা গণনা করা উচিত এবং প্রতিটি তিনটি স্থানাঙ্কের সেটের একটি তালিকা আউটপুট করা যায়, যেখানে লাইনগুলি সংযুক্ত হয়ে পাইথাগোরিয়ান ত্রিভুজগুলির একটি সেট ফর্মের স্থানাঙ্কগুলি থাকে। স্থানাঙ্কগুলি অবশ্যই আমাদের স্থানের আসল সংখ্যা xহতে হবে ( অবশ্যই বিরতিতে হতে হবে [0, W]এবং yঅবশ্যই বিরতিতে থাকতে হবে [0, H]), এবং মেশিনের নির্ভুলতার জন্য দূরত্বটি সঠিক হওয়া উচিত। ত্রিভুজগুলির ক্রম এবং প্রতিটি সমন্বয়ের সঠিক বিন্যাস গুরুত্বপূর্ণ নয়।

একটি ত্রিভুজ থেকে অন্য যে কোনও সংযুক্ত সীমানা পেরিয়ে কেবল "পদচারণা" করা অবশ্যই সম্ভব।

একটি উদাহরণ হিসাবে উপরে ডায়াগ্রাম ব্যবহার করে, আমাদের ইনপুট হোক W = 60, H = 60

আমাদের আউটপুট তখন স্থানাঙ্কগুলির নিম্নলিখিত তালিকা হতে পারে:

(0, 15), (0, 21), (8, 15)
(0, 21), (14.4, 40.2), (8, 15)
(0, 15), (8, 0), (8, 15)
(8, 0), (8, 15), (28, 15)
(8, 15), (28, 15), (28, 36)
(28, 15), (28, 36), (56, 36)

এখন, 6 টি ত্রিভুজগুলি অবশ্যই আমাদের স্থান প্রদত্ত সর্বোত্তম নয়। আপনি আরও ভাল করতে পারেন?

বিধি এবং স্কোরিং

  • এই চ্যালেঞ্জটির জন্য আপনার স্কোরটি হ'ল আপনার প্রোগ্রামটির ইনপুট প্রদত্ত ত্রিভুজগুলির সংখ্যা W = 1000, H = 1000। যদি কেউ সন্দেহ করে যে এই কেসটিকে হার্ডকোডিং করছে আমি এই ইনপুটটি পরিবর্তন করার অধিকার সংরক্ষণ করি।

  • আপনি পাইথাগোরিয়ান ট্রিপল গণনা করে এমন বিল্টিনগুলি ব্যবহার করতে পারবেন না এবং আপনি ২ টিরও বেশি পাইথাগোরীয় ট্রিপলের একটি তালিকা হার্ডকোড করতে পারবেন না (যদি আপনি আপনার প্রোগ্রামটিকে সর্বদা একটি (3, 4, 5) ত্রিভুজ বা অন্য কিছু অনুরূপ প্রারম্ভিক পরিস্থিতি দিয়ে শুরু করতে চান তবে যে ঠিক আছে).

  • আপনি যে কোনও ভাষায় আপনার জমা লিখতে পারেন। পাঠযোগ্যতা এবং মন্তব্য উত্সাহিত হয়।

  • আপনি পাইথাগোরিয়ান ট্রিপলগুলির একটি তালিকা এখানে পেতে পারেন

  • স্ট্যান্ডার্ড লুফোলগুলি অনুমোদিত নয়।


আমরা কি স্থানের মধ্যে একই ত্রিভুজটির একাধিক উদাহরণ ব্যবহার করতে পারি?
ডেভিডসি

1
@ ডেভিডকারারহর আপনার প্রোগ্রাম দ্বারা উত্পন্ন দুটি ত্রিভুজ একে অপরের সাথে একমত হতে পারে।
ব্রেইনস্টিল

3
এটি আগ্রহী হতে পারে: এন.ইউইকিপিডিয়া.org
স্তর নদী সেন্ট

এই সমস্যাটির জন্য অনেক গণনা প্রয়োজন, তাই না? বিশেষত যেহেতু এটি একটি প্যাকিং সমস্যা।
রেনে লিডার

1
পছন্দ করুন
জিওবিটস

উত্তর:


16

পাইথন 3, 109

এটি অবশ্যই একটি প্রতারণামূলকভাবে কঠিন চ্যালেঞ্জ ছিল। কোডটি লেখার অনেক সময় ছিল যে আমি নিজেকে আমার প্রাথমিক জ্যামিতির দক্ষতা নিয়ে প্রশ্ন করতে দেখেছি। বলা হচ্ছে, ফলাফল নিয়ে আমি বেশ খুশি। আমি ত্রিভুজগুলি স্থাপনের জন্য একটি জটিল অ্যালগরিদম নিয়ে আসতে কোন প্রয়াস রাখি না এবং এর পরিবর্তে আমার কোডটি সর্বদা ক্ষুদ্রতম এটি খুঁজে পাওয়ার মাধ্যমে ভুল করে। আমি আশা করি আমি এটির পরে উন্নতি করতে পারি, বা আমার উত্তরটি আরও ভাল অ্যালগরিদম খুঁজতে অন্যকে উত্সাহিত করবে! সব মিলিয়ে একটি খুব মজাদার সমস্যা এবং এটি কিছু আকর্ষণীয় ছবি তৈরি করে।

কোডটি এখানে:

import time
import math

W = int(input("Enter W: "))
H = int(input("Enter H: "))

middle_x = math.floor(W/2)
middle_y = math.floor(H/2)

sides = [ # each side is in the format [length, [x0, y0], [x1, y1]]
    [3,[middle_x,middle_y],[middle_x+3,middle_y]],
    [4,[middle_x,middle_y],[middle_x,middle_y+4]],
    [5,[middle_x+3,middle_y],[middle_x,middle_y+4]]
    ]

triangles = [[0,1,2]] # each triangle is in the format [a, b, c] where a, b and c are the indexes of sides

used_triangles = [[3,4,5]] # a list of used Pythagorean triples, where lengths are ordered (a < b < c)

max_bounds_length = math.sqrt(W**2 + H**2)

def check_if_pyth_triple(a,b): # accepts two lists of the form [l, [x0,y0], [x1,y1]] defining two line segments
    # returns 0 if there are no triples, 1 if there is a triple with a right angle on a,
    # and 2 if there is a triple with the right angle opposite a
    c = math.sqrt(a[0]**2 + b[0]**2)
    if c.is_integer():
        if not sorted([a[0], b[0], c]) in used_triangles:
            return 1
        return 0
    else:
        if a[0] > b[0]:
            c = math.sqrt(a[0]**2 - b[0]**2)
            if c.is_integer() and not sorted([a[0], b[0], c]) in used_triangles:
                return 2
        return 0

def check_if_out_of_bounds(p):
    out = False
    if p[0] < 0 or p[0] > W:
        out = True
    if p[1] < 0 or p[1] > H:
        out = True
    return out

def in_between(a,b,c):
    maxi = max(a,c)
    mini = min(a,c)
    return mini < b < maxi

def sides_intersect(AB,CD): # accepts two lists of the form [l, [x0,y0], [x1,y1]] defining two line segments
    # doesn't count overlapping lines
    A = AB[1]
    B = AB[2]
    C = CD[1]
    D = CD[2]

    if A[0] == B[0]: # AB is vertical
        if C[0] == D[0]: # CD is vertical
            return False
        else:
            m1 = (C[1] - D[1])/(C[0] - D[0]) # slope of CD
            y = m1*(A[0] - C[0]) + C[1] # the y value of CD at AB's x value
            return in_between(A[1], y, B[1]) and in_between(C[0], A[0], D[0])
    else:
        m0 = (A[1] - B[1])/(A[0] - B[0]) # slope of AB
        if C[0] == D[0]: # CD is vertical
            y = m0*(C[0] - A[0]) + A[1] # the y value of CD at AB's x value
            return in_between(C[1], y, D[1]) and in_between(A[0],C[0],B[0])
        else:
            m1 = (C[1] - D[1])/(C[0] - D[0]) # slope of CD
            if m0 == m1:
                return False
            else:
                x = (m0*A[0] - m1*C[0] - A[1] + C[1])/(m0 - m1)
                return in_between(A[0], x, B[0]) and in_between(C[0], x, D[0])

def check_all_sides(b,triangle):
    no_intersections = True
    for side in sides:
        if sides_intersect(side, b):
            no_intersections = False
            break

    return no_intersections

def check_point_still_has_room(A): # This function is needed for the weird case when all 2pi degrees
    # around a point are filled by triangles, but you could fit in a small triangle into another one
    # already built around the point. Doing this won't cause sides_intersect() to detect it because
    # the sides will all be parallel. Crazy stuff.
    connecting_sides = []
    for side in sides:
        if A in side:
            connecting_sides.append(side)

    match_count = 0
    slopes = []
    for side in connecting_sides:
        B = side[1]
        if A == B:
            B = side[2]
        if not A[0] == B[0]:
            slope = round((A[1]-B[1])/(A[0]-B[0]),4)
        else:
            if A[1] < B[1]:
                slope = "infinity"
            else:
                slope = "neg_infinity"
        if slope in slopes:
            match_count -= 1
        else:
            slopes.append(slope)
            match_count += 1

    return match_count != 0

def construct_b(a,b,pyth_triple_info,straight_b_direction,bent_b_direction):
    # this function finds the correct third point of the triangle given a and the length of b
    # pyth_triple_info determines if a is a leg or the hypotenuse
    # the b_directions determine on which side of a the triangle should be formed
    a_p = 2 # this is the index of the point in a that is not the shared point with b
    if a[1] != b[1]:
        a_p = 1

    vx = a[a_p][0] - b[1][0] # v is our vector, and these are the coordinates, adjusted so that
    vy = a[a_p][1] - b[1][1] # the shared point is the origin

    if pyth_triple_info == 1:
        # because the dot product of orthogonal vectors is zero, we can use that and the Pythagorean formula
        # to get this simple formula for generating the coordinates of b's second point
        if vy == 0:
            x = 0
            y = b[0]
        else:
            x = b[0]/math.sqrt(1+((-vx/vy)**2)) # b[0] is the desired length
            y = -vx*x/vy

        x = x*straight_b_direction # since the vector is orthagonal, if we want to reverse the direction,
        y = y*straight_b_direction # it just means finding the mirror point

    elif pyth_triple_info == 2: # this finds the intersection of the two circles of radii b[0] and c 
        # around a's endpoints, which is the third point of the triangle if a is the hypotenuse
        c = math.sqrt(a[0]**2 - b[0]**2)
        D = a[0]
        A = (b[0]**2 - c**2 + D**2 ) / (2*D)
        h = math.sqrt(b[0]**2 - A**2)
        x2 = vx*(A/D)
        y2 = vy*(A/D)        
        x = x2 + h*vy/D
        y = y2 - h*vx/D

        if bent_b_direction == -1: # this constitutes reflection of the vector (-x,-y) around the normal vector n,
            # which accounts for finding the triangle on the opposite side of a
            dx = -x
            dy = -y
            v_length = math.sqrt(vx**2 + vy**2)
            nx = vx/v_length
            ny = vy/v_length

            d_dot_n = dx*nx + dy*ny

            x = dx - 2*d_dot_n*nx
            y = dy - 2*d_dot_n*ny

    x = x + b[1][0] # adjust back to the original frame
    y = y + b[1][1]

    return [x,y]

def construct_triangle(side_index):
    a = sides[side_index] # a is the base of the triangle
    a_p = 1
    b = [1, a[a_p], []] # side b, c is hypotenuse

    for index, triangle in enumerate(triangles):
        if side_index in triangle:
            triangle_index = index
            break

    triangle = list(triangles[triangle_index])
    triangle.remove(side_index)

    add_tri = False

    straight_b = construct_b(a,b,1,1,1)

    bent_b = construct_b(a,b,2,1,1)

    A = sides[triangle[0]][1]
    if A in a:
        A = sides[triangle[0]][2]

    Ax = A[0] - b[1][0] # adjusting A so that it's a vector
    Ay = A[1] - b[1][1]

    # these are for determining if construct_b() is going to the correct side
    triangle_on_side = (a[2][0]-a[1][0])*(A[1]-a[1][1]) - (a[2][1]-a[1][1])*(A[0]-a[1][0])
    straight_b_on_side = (a[2][0]-a[1][0])*(straight_b[1]-a[1][1]) - (a[2][1]-a[1][1])*(straight_b[0]-a[1][0])
    bent_b_on_side = (a[2][0]-a[1][0])*(bent_b[1]-a[1][1]) - (a[2][1]-a[1][1])*(bent_b[0]-a[1][0])

    straight_b_direction = 1
    if (triangle_on_side > 0 and straight_b_on_side > 0) or (triangle_on_side < 0 and straight_b_on_side < 0):
        straight_b_direction = -1

    bent_b_direction = 1
    if (triangle_on_side > 0 and bent_b_on_side > 0) or (triangle_on_side < 0 and bent_b_on_side < 0):
        bent_b_direction = -1


    a_ps = []
    for x in [1,2]:
        if check_point_still_has_room(a[x]): # here we check for that weird exception
            a_ps.append(x)

    while True:
        out_of_bounds = False
        if b[0] > max_bounds_length:
            break

        pyth_triple_info = check_if_pyth_triple(a,b)

        for a_p in a_ps:
            if a_p == 1: # this accounts for the change in direction when switching a's points
                new_bent_b_direction = bent_b_direction
            else:
                new_bent_b_direction = -bent_b_direction

            b[1] = a[a_p]
            if pyth_triple_info > 0:
                b[2] = construct_b(a,b,pyth_triple_info,straight_b_direction,new_bent_b_direction)

                if check_if_out_of_bounds(b[2]): # here is the check to make sure we don't go out of bounds
                    out_of_bounds = True
                    break

                if check_all_sides(b,triangle):
                    if pyth_triple_info == 1:
                        c = [math.sqrt(a[0]**2 + b[0]**2), a[3-a_p], b[2]]
                    else:
                        c = [math.sqrt(a[0]**2 - b[0]**2), a[3-a_p], b[2]]

                    if check_all_sides(c,triangle):
                        add_tri = True
                        break

        if out_of_bounds or add_tri:
            break

        b[0] += 1 # increment the length of b every time the loop goes through

    if add_tri: # this adds a new triangle
        sides.append(b)
        sides.append(c)
        sides_len = len(sides)
        triangles.append([side_index, sides_len - 2, sides_len - 1])
        used_triangles.append(sorted([a[0], b[0], c[0]])) # so we don't use the same triangle again

def build_all_triangles(): # this iterates through every side to see if a new triangle can be constructed
    # this is probably where real optimization would take place so more optimal triangles are placed first
    t0 = time.clock()

    index = 0
    while index < len(sides):
        construct_triangle(index)
        index += 1

    t1 = time.clock()

    triangles_points = [] # this is all for printing points
    for triangle in triangles:
        point_list = []
        for x in [1,2]:
            for side_index in triangle:
                point = sides[side_index][x]
                if not point in point_list:
                    point_list.append(point)
        triangles_points.append(point_list)

    for triangle in triangles_points:
        print(triangle)

    print(len(triangles), "triangles placed in", round(t1-t0,3), "seconds.")

def matplotlib_graph(): # this displays the triangles with matplotlib
    import pylab as pl
    import matplotlib.pyplot as plt
    from matplotlib import collections as mc

    lines = []
    for side in sides:
        lines.append([side[1],side[2]])

    lc = mc.LineCollection(lines)
    fig, ax = pl.subplots()
    ax.add_collection(lc)
    ax.autoscale()
    ax.margins(0.1)
    plt.show()

build_all_triangles()

109 ত্রিভুজগুলির সাথে W = 1000এবং এর H = 1000সাথে আউটপুটটির একটি গ্রাফ দেওয়া হয়েছে : ত্রিভুজগুলির গ্রাফ ম্যাটপ্ল্লোলিবের সাথে প্লট করা হয়েছে

এখানে W = 10000এবং H = 10000724 ত্রিভুজ সহ: ত্রিভুজগুলির গ্রাফ ম্যাটপ্ল্লোলিবের সাথে প্লট করা হয়েছে

ত্রিভুজগুলি গ্রাফ করার matplotlib_graph()পরে ফাংশনটি কল করুন build_all_triangles()

আমি যুক্তিসঙ্গতভাবে ফাস্ট কোড রান চিন্তা করুন: এ W = 1000এবং H = 1000এটা 0.66 সেকেন্ড সময় লাগে, এবং W = 10000এবং H = 10000এটা আমার ন্যক্কারজনক ল্যাপটপ ব্যবহার 45 সেকেন্ড সময় লাগে।


আমার সমাধানটি আমার শেষ করতে হবে। কয়েক সপ্তাহ আগে আমি অনেকটা দূরে ছিলাম, তবে এটির কাজটি কখনই শেষ হয় নি। এটি আসলে অনেক কাজ! বিশেষত ছেদ পরীক্ষাগুলির সাথে এবং তাদের ক্ষয়িষ্ণু ক্ষেত্রে সঠিকভাবে কাজ করা। আমি মনে করি আমি জানি যে এর জন্য আমি কী পদ্ধতি ব্যবহার করতে চাই, তবে এটি এখনও শেষ হয়নি।
রেটো কোরাাদি

1
বাহ, এটি একটি চমৎকার প্রথম সমাধান! আমি বিশেষত গ্রাফগুলি পছন্দ করি। আপনি এই চ্যালেঞ্জটি উপভোগ করেছেন বলে আমি আনন্দিত, এবং আমি আশা করি আপনি পিপিসিজির আশেপাশে রয়েছেন!
BrainSteel

এটি সম্ভবত আমি সবচেয়ে বিশৃঙ্খল ছবিটি দেখেছি
বিটা ডেকে

16

সি ++, 146 ত্রিভুজ (অংশ 1/2)

চিত্র হিসাবে ফলাফল

ফল

অ্যালগরিদমের বিবরণ

এটি সমাধানের স্থানের প্রস্থের প্রথম সন্ধান ব্যবহার করে। প্রতিটি পদক্ষেপে, এটি kবাক্সে খাপযুক্ত ত্রিভুজগুলির সমস্ত অনন্য কনফিগারেশন দিয়ে শুরু হয় k + 1এবং কোনও কনফিগারেশনে অব্যবহৃত ত্রিভুজ যুক্ত করার সমস্ত বিকল্পকে গণনা করে ত্রিভুজগুলির সমস্ত অনন্য কনফিগারেশন তৈরি করে ।

অ্যালগোরিদম মূলত একটি বিস্তৃত বিএফএসের সাথে নিখুঁত সর্বাধিক সন্ধান করার জন্য সেট আপ করা হয়। এবং এটি ছোট আকারের জন্য এটি সফলভাবে করে। উদাহরণস্বরূপ, 50x50 এর একটি বাক্সের জন্য, এটি প্রায় 1 মিনিটের মধ্যে সর্বাধিক সন্ধান করে। তবে 1000x1000 এর জন্য সমাধানের স্থানটি অনেক বড়। এটিকে শেষ হতে দেওয়ার জন্য, আমি প্রতিটি পদক্ষেপের পরে সমাধানের তালিকাটি ছাঁটাই করি। সমাধানের সংখ্যাটি একটি কমান্ড লাইন আর্গুমেন্ট দ্বারা দেওয়া হয়। উপরের সমাধানের জন্য, 50 টির মান ব্যবহার করা হয়েছিল। এর ফলে প্রায় 10 মিনিটের রানটাইম হয়েছিল।

মূল পদক্ষেপের রূপরেখাটি দেখতে এই রকম দেখাচ্ছে:

  1. বাক্সের ভিতরে সম্ভাব্যভাবে ফিট করতে পারে এমন সমস্ত পাইথাগোরীয় ত্রিভুজ তৈরি করুন।
  2. প্রতিটি 1 টি ত্রিভুজ সহ সমাধানযুক্ত প্রাথমিক সমাধান সেট তৈরি করুন।
  3. প্রজন্মের উপর লুপ (ত্রিভুজ গণনা)।
    1. সমাধান সেট থেকে অবৈধ সমাধানগুলি মুছে ফেলুন। এগুলি এমন সমাধান যা বাক্সের অভ্যন্তরে ফিট হয় না বা ওভারল্যাপ হয়।
    2. যদি সমাধান সেটটি খালি থাকে, তবে আমরা সম্পন্ন হয়েছি। পূর্ববর্তী জেনারেশন থেকে সেট করা সমাধানটিতে ম্যাক্সিমা রয়েছে।
    3. ট্রিম বিকল্পটি সক্ষম করা থাকলে ট্রিম সলিউশনটি দেওয়া আকারে সেট করে।
    4. বর্তমান প্রজন্মের সমস্ত সমাধানের উপর লুপ করুন।
      1. সমাধানের ঘেরে সমস্ত পক্ষের লুপ।
        1. ঘেরের পাশের সাথে মিলে যাওয়ার পাশের দৈর্ঘ্যের সমস্ত ত্রিভুজগুলি সন্ধান করুন এবং এটি এখনও সমাধানে নেই।
        2. ত্রিভুজ যুক্ত করার ফলে নতুন সমাধান তৈরি করুন এবং নতুন প্রজন্মের সমাধান সেটটিতে সমাধান যুক্ত করুন।
  4. সমাধান মুদ্রণ।

পুরো স্কিমের একটি গুরুত্বপূর্ণ দিক হ'ল কনফিগারেশনগুলি সাধারণত একাধিকবার উত্পন্ন হয় এবং আমরা কেবল অনন্য কনফিগারেশনে আগ্রহী। সুতরাং আমাদের একটি অনন্য কী প্রয়োজন যা সমাধানকে সংজ্ঞায়িত করে, যা সমাধান তৈরি করার সময় ব্যবহৃত ত্রিভুজগুলির ক্রম থেকে পৃথক থাকতে হবে। উদাহরণস্বরূপ, কীটির জন্য স্থানাঙ্কগুলি ব্যবহার করা মোটেই কার্যকর হবে না, যেহেতু আমরা একাধিক আদেশে একই সমাধানে পৌঁছালে এগুলি সম্পূর্ণ আলাদা হতে পারে। আমি যা ব্যবহার করেছি তা হ'ল বৈশ্বিক তালিকায় ত্রিভুজ সূচকগুলির সেট, এবং "সংযোজক" অবজেক্টগুলির একটি সেট যা ত্রিভুজগুলি কীভাবে সংযুক্ত রয়েছে তা নির্ধারণ করে। সুতরাং কীটি কেবল টপোলজি এনকোড করে, 2 ডি স্পেসে নির্মাণ আদেশ এবং অবস্থানের চেয়ে পৃথক।

বাস্তবায়নের দিকটি আরও একটি অংশ যা সম্পূর্ণরূপে তুচ্ছ নয় এটি সিদ্ধান্ত নিচ্ছে যে কীভাবে এবং কীভাবে পুরো জিনিসটি প্রদত্ত বাক্সে ফিট করে। আপনি যদি সত্যই সীমানা ঠেলাতে চান তবে বাক্সের ভিতরে ঘোরানোর জন্য এটি স্পষ্টতই প্রয়োজনীয় allow

আমি চেষ্টা করব এবং পরে অংশ 2 তে কোডটিতে কিছু মন্তব্য যুক্ত করব, যদি কেউ এই সমস্ত কীভাবে কাজ করে তার বিশদটি ডুবতে চায়।

অফিসিয়াল পাঠ্য বিন্যাসে ফলাফল in

(322.085, 641.587) (318.105, 641.979) (321.791, 638.602)
(318.105, 641.979) (309.998, 633.131) (321.791, 638.602)
(318.105, 641.979) (303.362, 639.211) (309.998, 633.131)
(318.105, 641.979) (301.886, 647.073) (303.362, 639.211)
(301.886, 647.073) (297.465, 638.103) (303.362, 639.211)
(301.886, 647.073) (280.358, 657.682) (297.465, 638.103)
(301.886, 647.073) (283.452, 663.961) (280.358, 657.682)
(301.886, 647.073) (298.195, 666.730) (283.452, 663.961)
(301.886, 647.073) (308.959, 661.425) (298.195, 666.730)
(301.886, 647.073) (335.868, 648.164) (308.959, 661.425)
(335.868, 648.164) (325.012, 669.568) (308.959, 661.425)
(308.959, 661.425) (313.666, 698.124) (298.195, 666.730)
(313.666, 698.124) (293.027, 694.249) (298.195, 666.730)
(313.666, 698.124) (289.336, 713.905) (293.027, 694.249)
(298.195, 666.730) (276.808, 699.343) (283.452, 663.961)
(335.868, 648.164) (353.550, 684.043) (325.012, 669.568)
(303.362, 639.211) (276.341, 609.717) (309.998, 633.131)
(276.808, 699.343) (250.272, 694.360) (283.452, 663.961)
(335.868, 648.164) (362.778, 634.902) (353.550, 684.043)
(362.778, 634.902) (367.483, 682.671) (353.550, 684.043)
(250.272, 694.360) (234.060, 676.664) (283.452, 663.961)
(362.778, 634.902) (382.682, 632.942) (367.483, 682.671)
(382.682, 632.942) (419.979, 644.341) (367.483, 682.671)
(419.979, 644.341) (379.809, 692.873) (367.483, 682.671)
(353.550, 684.043) (326.409, 737.553) (325.012, 669.568)
(353.550, 684.043) (361.864, 731.318) (326.409, 737.553)
(353.550, 684.043) (416.033, 721.791) (361.864, 731.318)
(416.033, 721.791) (385.938, 753.889) (361.864, 731.318)
(385.938, 753.889) (323.561, 772.170) (361.864, 731.318)
(385.938, 753.889) (383.201, 778.739) (323.561, 772.170)
(383.201, 778.739) (381.996, 789.673) (323.561, 772.170)
(323.561, 772.170) (292.922, 743.443) (361.864, 731.318)
(323.561, 772.170) (296.202, 801.350) (292.922, 743.443)
(250.272, 694.360) (182.446, 723.951) (234.060, 676.664)
(335.868, 648.164) (330.951, 570.319) (362.778, 634.902)
(330.951, 570.319) (381.615, 625.619) (362.778, 634.902)
(330.951, 570.319) (375.734, 565.908) (381.615, 625.619)
(330.951, 570.319) (372.989, 538.043) (375.734, 565.908)
(323.561, 772.170) (350.914, 852.648) (296.202, 801.350)
(323.561, 772.170) (362.438, 846.632) (350.914, 852.648)
(234.060, 676.664) (217.123, 610.807) (283.452, 663.961)
(217.123, 610.807) (249.415, 594.893) (283.452, 663.961)
(375.734, 565.908) (438.431, 559.733) (381.615, 625.619)
(382.682, 632.942) (443.362, 567.835) (419.979, 644.341)
(443.362, 567.835) (471.667, 606.601) (419.979, 644.341)
(323.561, 772.170) (393.464, 830.433) (362.438, 846.632)
(372.989, 538.043) (471.272, 556.499) (375.734, 565.908)
(372.989, 538.043) (444.749, 502.679) (471.272, 556.499)
(372.989, 538.043) (365.033, 521.897) (444.749, 502.679)
(443.362, 567.835) (544.353, 553.528) (471.667, 606.601)
(544.353, 553.528) (523.309, 622.384) (471.667, 606.601)
(544.353, 553.528) (606.515, 572.527) (523.309, 622.384)
(419.979, 644.341) (484.688, 697.901) (379.809, 692.873)
(444.749, 502.679) (552.898, 516.272) (471.272, 556.499)
(217.123, 610.807) (170.708, 516.623) (249.415, 594.893)
(484.688, 697.901) (482.006, 753.837) (379.809, 692.873)
(484.688, 697.901) (571.903, 758.147) (482.006, 753.837)
(419.979, 644.341) (535.698, 636.273) (484.688, 697.901)
(276.808, 699.343) (228.126, 812.299) (250.272, 694.360)
(228.126, 812.299) (185.689, 726.188) (250.272, 694.360)
(228.126, 812.299) (192.246, 829.981) (185.689, 726.188)
(393.464, 830.433) (449.003, 936.807) (362.438, 846.632)
(393.464, 830.433) (468.505, 926.625) (449.003, 936.807)
(416.033, 721.791) (471.289, 833.915) (385.938, 753.889)
(471.289, 833.915) (430.252, 852.379) (385.938, 753.889)
(350.914, 852.648) (227.804, 874.300) (296.202, 801.350)
(192.246, 829.981) (114.401, 834.898) (185.689, 726.188)
(114.401, 834.898) (155.433, 715.767) (185.689, 726.188)
(217.123, 610.807) (91.773, 555.523) (170.708, 516.623)
(91.773, 555.523) (141.533, 457.421) (170.708, 516.623)
(141.533, 457.421) (241.996, 407.912) (170.708, 516.623)
(141.533, 457.421) (235.365, 394.457) (241.996, 407.912)
(241.996, 407.912) (219.849, 525.851) (170.708, 516.623)
(241.996, 407.912) (304.896, 419.724) (219.849, 525.851)
(91.773, 555.523) (55.917, 413.995) (141.533, 457.421)
(571.903, 758.147) (476.260, 873.699) (482.006, 753.837)
(571.903, 758.147) (514.819, 890.349) (476.260, 873.699)
(571.903, 758.147) (587.510, 764.886) (514.819, 890.349)
(587.510, 764.886) (537.290, 898.778) (514.819, 890.349)
(587.510, 764.886) (592.254, 896.801) (537.290, 898.778)
(587.510, 764.886) (672.455, 761.831) (592.254, 896.801)
(55.917, 413.995) (113.819, 299.840) (141.533, 457.421)
(113.819, 299.840) (149.275, 293.604) (141.533, 457.421)
(544.353, 553.528) (652.112, 423.339) (606.515, 572.527)
(652.112, 423.339) (698.333, 461.597) (606.515, 572.527)
(535.698, 636.273) (651.250, 731.917) (484.688, 697.901)
(651.250, 731.917) (642.213, 756.296) (484.688, 697.901)
(304.896, 419.724) (299.444, 589.636) (219.849, 525.851)
(304.896, 419.724) (369.108, 452.294) (299.444, 589.636)
(304.896, 419.724) (365.965, 299.326) (369.108, 452.294)
(304.896, 419.724) (269.090, 347.067) (365.965, 299.326)
(114.401, 834.898) (0.942, 795.820) (155.433, 715.767)
(114.401, 834.898) (75.649, 947.412) (0.942, 795.820)
(192.246, 829.981) (124.489, 994.580) (114.401, 834.898)
(269.090, 347.067) (205.435, 217.901) (365.965, 299.326)
(205.435, 217.901) (214.030, 200.956) (365.965, 299.326)
(182.446, 723.951) (68.958, 600.078) (234.060, 676.664)
(182.446, 723.951) (32.828, 633.179) (68.958, 600.078)
(652.112, 423.339) (763.695, 288.528) (698.333, 461.597)
(763.695, 288.528) (808.220, 324.117) (698.333, 461.597)
(763.695, 288.528) (811.147, 229.162) (808.220, 324.117)
(652.112, 423.339) (627.572, 321.247) (763.695, 288.528)
(627.572, 321.247) (660.872, 244.129) (763.695, 288.528)
(652.112, 423.339) (530.342, 344.618) (627.572, 321.247)
(652.112, 423.339) (570.488, 453.449) (530.342, 344.618)
(627.572, 321.247) (503.633, 267.730) (660.872, 244.129)
(365.965, 299.326) (473.086, 450.157) (369.108, 452.294)
(365.965, 299.326) (506.922, 344.440) (473.086, 450.157)
(365.965, 299.326) (394.633, 260.827) (506.922, 344.440)
(394.633, 260.827) (537.381, 303.535) (506.922, 344.440)
(811.147, 229.162) (979.067, 234.338) (808.220, 324.117)
(698.333, 461.597) (706.660, 655.418) (606.515, 572.527)
(811.147, 229.162) (982.117, 135.385) (979.067, 234.338)
(982.117, 135.385) (999.058, 234.954) (979.067, 234.338)
(365.965, 299.326) (214.375, 186.448) (394.633, 260.827)
(811.147, 229.162) (803.145, 154.590) (982.117, 135.385)
(803.145, 154.590) (978.596, 102.573) (982.117, 135.385)
(214.375, 186.448) (314.969, 126.701) (394.633, 260.827)
(314.969, 126.701) (508.984, 192.909) (394.633, 260.827)
(314.969, 126.701) (338.497, 88.341) (508.984, 192.909)
(338.497, 88.341) (523.725, 138.884) (508.984, 192.909)
(338.497, 88.341) (359.556, 11.163) (523.725, 138.884)
(808.220, 324.117) (801.442, 544.012) (698.333, 461.597)
(801.442, 544.012) (739.631, 621.345) (698.333, 461.597)
(660.872, 244.129) (732.227, 78.877) (763.695, 288.528)
(660.872, 244.129) (644.092, 40.821) (732.227, 78.877)
(808.220, 324.117) (822.432, 544.659) (801.442, 544.012)
(660.872, 244.129) (559.380, 47.812) (644.092, 40.821)
(660.872, 244.129) (556.880, 242.796) (559.380, 47.812)
(556.880, 242.796) (528.882, 242.437) (559.380, 47.812)
(808.220, 324.117) (924.831, 449.189) (822.432, 544.659)
(924.831, 449.189) (922.677, 652.177) (822.432, 544.659)
(922.677, 652.177) (779.319, 785.836) (822.432, 544.659)
(779.319, 785.836) (696.630, 771.054) (822.432, 544.659)
(779.319, 785.836) (746.412, 969.918) (696.630, 771.054)
(779.319, 785.836) (848.467, 840.265) (746.412, 969.918)
(848.467, 840.265) (889.327, 872.428) (746.412, 969.918)
(746.412, 969.918) (619.097, 866.541) (696.630, 771.054)
(779.319, 785.836) (993.200, 656.395) (848.467, 840.265)
(993.200, 656.395) (935.157, 864.450) (848.467, 840.265)
(993.200, 656.395) (995.840, 881.379) (935.157, 864.450)
(338.497, 88.341) (34.607, 5.420) (359.556, 11.163)
(338.497, 88.341) (189.294, 204.357) (34.607, 5.420)
(189.294, 204.357) (158.507, 228.296) (34.607, 5.420)
(158.507, 228.296) (38.525, 230.386) (34.607, 5.420)
(158.507, 228.296) (41.694, 412.358) (38.525, 230.386)

কোড

কোডের জন্য অংশ 2 দেখুন। পোস্ট আকারের সীমাতে কাজ করতে এটি 2 ভাগে বিভক্ত হয়েছিল।

কোডটি পেস্টবিনেও উপলব্ধ ।


8

সি ++, 146 ত্রিভুজ (অংশ 2/2)

প্রথম অংশ 1 থেকে অব্যাহত পোস্ট আকার সীমাতে কাজ করার জন্য এটি 2 ভাগে বিভক্ত করা হয়েছিল।

কোড

মন্তব্য যোগ করা হবে।

#include <cmath>
#include <vector>
#include <set>
#include <map>
#include <sstream>
#include <iostream>

class Vec2 {
public:
    Vec2()
      : m_x(0.0f), m_y(0.0f) {
    }

    Vec2(float x, float y)
      : m_x(x), m_y(y) {
    }

    float x() const {
        return m_x;
    }

    float y() const {
        return m_y;
    }

    void normalize() {
        float s = 1.0f / sqrt(m_x * m_x + m_y * m_y);
        m_x *= s;
        m_y *= s;
    }

    Vec2 operator+(const Vec2& rhs) const {
        return Vec2(m_x + rhs.m_x, m_y + rhs.m_y);
    }

    Vec2 operator-(const Vec2& rhs) const {
        return Vec2(m_x - rhs.m_x, m_y - rhs.m_y);
    }

    Vec2 operator*(float s) const {
        return Vec2(m_x * s, m_y * s);
    }

private:
    float m_x, m_y;
};

static float cross(const Vec2& v1, const Vec2& v2) {
    return v1.x() * v2.y() - v1.y() * v2.x();
}

class Triangle {
public:
    Triangle()
      : m_sideLenA(0), m_sideLenB(0), m_sideLenC(0) {
    }

    Triangle(int sideLenA, int sideLenB, int sideLenC)
      : m_sideLenA(sideLenA),
        m_sideLenB(sideLenB),
        m_sideLenC(sideLenC) {
    }

    int getSideLenA() const {
        return m_sideLenA;
    }

    int getSideLenB() const {
        return m_sideLenB;
    }

    int getSideLenC() const {
        return m_sideLenC;
    }

private:
    int m_sideLenA, m_sideLenB, m_sideLenC;
};

class Connector {
public:
    Connector(int sideLen, int triIdx1, int triIdx2, bool flipped);

    bool operator<(const Connector& rhs) const;

    void print() const {
        std::cout << m_sideLen << "/" << m_triIdx1 << "/"
                  << m_triIdx2 << "/" << m_flipped << " ";
    }

private:
    int m_sideLen;
    int m_triIdx1, m_triIdx2;
    bool m_flipped;
};

typedef std::vector<Triangle> TriangleVec;
typedef std::multimap<int, int> SideMap;

typedef std::set<int> TriangleSet;
typedef std::set<Connector> ConnectorSet;

class SolutionKey {
public:
    SolutionKey() {
    }

    void init(int triIdx);
    void add(int triIdx, const Connector& conn);

    bool containsTriangle(int triIdx) const;
    int minTriangle() const;

    bool operator<(const SolutionKey& rhs) const;

    void print() const;

private:
    TriangleSet m_tris;
    ConnectorSet m_conns;
};

typedef std::map<SolutionKey, class SolutionData> SolutionMap;

class SolutionData {
public:
    SolutionData()
      : m_lastPeriIdx(0),
        m_rotAng(0.0f),
        m_xShift(0.0f), m_yShift(0.0f) {
    }

    void init(int triIdx);

    bool fitsInBox();
    bool selfOverlaps() const;

    void nextGeneration(
        const SolutionKey& key, bool useTrim, SolutionMap& rNewSols) const;

    void print() const;

private:
    void addTriangle(
        const SolutionKey& key, int periIdx, int newTriIdx,
        SolutionMap& rNewSols) const;

    std::vector<int> m_periTris;
    std::vector<int> m_periLens;
    std::vector<bool> m_periFlipped;
    std::vector<Vec2> m_periPoints;

    int m_lastPeriIdx;

    std::vector<Vec2> m_triPoints;

    float m_rotAng;
    float m_xShift, m_yShift;
};

static int BoxW  = 0;
static int BoxH  = 0;
static int BoxD2 = 0;

static TriangleVec AllTriangles;
static SideMap AllSides;

Connector::Connector(
    int sideLen, int triIdx1, int triIdx2, bool flipped)
  : m_sideLen(sideLen),
    m_flipped(flipped) {
    if (triIdx1 < triIdx2) {
        m_triIdx1 = triIdx1;
        m_triIdx2 = triIdx2;
    } else {
        m_triIdx1 = triIdx2;
        m_triIdx2 = triIdx1;
    }
}

bool Connector::operator<(const Connector& rhs) const {
    if (m_sideLen < rhs.m_sideLen) {
        return true;
    } else if (m_sideLen > rhs.m_sideLen) {
        return false;
    }

    if (m_triIdx1 < rhs.m_triIdx1) {
        return true;
    } else if (m_triIdx1 > rhs.m_triIdx1) {
        return false;
    }

    if (m_triIdx2 < rhs.m_triIdx2) {
        return true;
    } else if (m_triIdx2 > rhs.m_triIdx2) {
        return false;
    }

    return m_flipped < rhs.m_flipped;
}

void SolutionKey::init(int triIdx) {
    m_tris.insert(triIdx);
}

void SolutionKey::add(int triIdx, const Connector& conn) {
    m_tris.insert(triIdx);
    m_conns.insert(conn);
}

bool SolutionKey::containsTriangle(int triIdx) const {
    return m_tris.count(triIdx);
}

int SolutionKey::minTriangle() const {
    return *m_tris.begin();
}

bool SolutionKey::operator<(const SolutionKey& rhs) const {
    if (m_tris.size() < rhs.m_tris.size()) {
        return true;
    } else if (m_tris.size() > rhs.m_tris.size()) {
        return false;
    }

    TriangleSet::const_iterator triIt1 = m_tris.begin();
    TriangleSet::const_iterator triIt2 = rhs.m_tris.begin();
    while (triIt1 != m_tris.end()) {
        if (*triIt1 < *triIt2) {
           return true;
        } else if (*triIt2 < *triIt1) {
           return false;
        }
        ++triIt1;
        ++triIt2;
    }

    if (m_conns.size() < rhs.m_conns.size()) {
        return true;
    } else if (m_conns.size() > rhs.m_conns.size()) {
        return false;
    }

    ConnectorSet::const_iterator connIt1 = m_conns.begin();
    ConnectorSet::const_iterator connIt2 = rhs.m_conns.begin();
    while (connIt1 != m_conns.end()) {
        if (*connIt1 < *connIt2) {
           return true;
        } else if (*connIt2 < *connIt1) {
           return false;
        }
        ++connIt1;
        ++connIt2;
    }

    return false;
}

void SolutionKey::print() const {
    TriangleSet::const_iterator triIt = m_tris.begin();
    while (triIt != m_tris.end()) {
        std::cout << *triIt << " ";
        ++triIt;
    }
    std::cout << "\n";

    ConnectorSet::const_iterator connIt = m_conns.begin();
    while (connIt != m_conns.end()) {
        connIt->print();
        ++connIt;
    }
    std::cout << "\n";
}

void SolutionData::init(int triIdx) {
    const Triangle& tri = AllTriangles[triIdx];

    m_periTris.push_back(triIdx);
    m_periTris.push_back(triIdx);
    m_periTris.push_back(triIdx);

    m_periLens.push_back(tri.getSideLenB());
    m_periLens.push_back(tri.getSideLenC());
    m_periLens.push_back(tri.getSideLenA());

    m_periFlipped.push_back(false);
    m_periFlipped.push_back(false);
    m_periFlipped.push_back(false);

    m_periPoints.push_back(Vec2(0.0f, 0.0f));
    m_periPoints.push_back(Vec2(tri.getSideLenB(), 0.0f));
    m_periPoints.push_back(Vec2(0.0f, tri.getSideLenA()));

    m_triPoints = m_periPoints;

    m_periPoints.push_back(Vec2(0.0f, 0.0f));
}

bool SolutionData::fitsInBox() {
    int nStep = 8;
    float angInc = 0.5f * M_PI / nStep;

    for (;;) {
        bool mayFit = false;
        float ang = 0.0f;

        for (int iStep = 0; iStep <= nStep; ++iStep) {
            float cosAng = cos(ang);
            float sinAng = sin(ang);

            float xMin = 0.0f;
            float xMax = 0.0f;
            float yMin = 0.0f;
            float yMax = 0.0f;
            bool isFirst = true;

            for (int iPeri = 0; iPeri < m_periLens.size(); ++iPeri) {
                const Vec2& pt = m_periPoints[iPeri];
                float x = cosAng * pt.x() - sinAng * pt.y();
                float y = sinAng * pt.x() + cosAng * pt.y();

                if (isFirst) {
                    xMin = x;
                    xMax = x;
                    yMin = y;
                    yMax = y;
                    isFirst = false;
                } else {
                    if (x < xMin) {
                        xMin = x;
                    } else if (x > xMax) {
                        xMax = x;
                    }
                    if (y < yMin) {
                        yMin = y;
                    } else if (y > yMax) {
                        yMax = y;
                    }
                }
            }

            float w = xMax - xMin;
            float h = yMax - yMin;

            bool fits = false;
            if ((BoxW >= BoxH) == (w >= h)) {
                if (w <= BoxW && h <= BoxH) {
                    m_rotAng = ang;
                    m_xShift = 0.5f * BoxW - 0.5f * (xMax + xMin);
                    m_yShift = 0.5f * BoxH - 0.5f * (yMax + yMin);
                    return true;
                }
            } else {
                if (h <= BoxW && w <= BoxH) {
                    m_rotAng = ang + 0.5f * M_PI;
                    m_xShift = 0.5f * BoxW + 0.5f * (yMax + yMin);
                    m_yShift = 0.5f * BoxH - 0.5f * (xMax + xMin);
                    return true;
                }
            }

            w -= 0.125f * w * angInc * angInc + 0.5f * h * angInc;
            h -= 0.125f * h * angInc * angInc + 0.5f * w * angInc;

            if ((BoxW < BoxH) == (w < h)) {
                if (w <= BoxW && h <= BoxH) {
                    mayFit = true;
                }
            } else {
                if (h <= BoxW && w <= BoxH) {
                    mayFit = true;
                }
            }

            ang += angInc;
        }

        if (!mayFit) {
            break;
        }

        nStep *= 4;
        angInc *= 0.25f;
    }

    return false;
}

static bool intersects(
    const Vec2& p1, const Vec2& p2,
    const Vec2& q1, const Vec2& q2) {

    if (cross(p2 - p1, q1 - p1) * cross(p2 - p1, q2 - p1) > 0.0f) {
        return false;
    }

    if (cross(q2 - q1, p1 - q1) * cross(q2 - q1, p2 - q1) > 0.0f) {
        return false;
    }

    return true;
}

bool SolutionData::selfOverlaps() const {
    int periSize = m_periPoints.size();

    int triIdx = m_periTris[m_lastPeriIdx];
    const Triangle& tri = AllTriangles[triIdx];
    float offsScale = 0.0001f / tri.getSideLenC();

    const Vec2& pt1 = m_periPoints[m_lastPeriIdx];
    const Vec2& pt3 = m_periPoints[m_lastPeriIdx + 1];
    const Vec2& pt2 = m_periPoints[m_lastPeriIdx + 2];

    Vec2 pt1o = pt1 + ((pt2 - pt1) + (pt3 - pt1)) * offsScale;
    Vec2 pt2o = pt2 + ((pt1 - pt2) + (pt3 - pt2)) * offsScale;
    Vec2 pt3o = pt3 + ((pt1 - pt3) + (pt2 - pt3)) * offsScale;

    float xMax = m_periPoints[0].x();
    float yMax = m_periPoints[0].y();
    for (int iPeri = 1; iPeri < m_periLens.size(); ++iPeri) {
        if (m_periPoints[iPeri].x() > xMax) {
            xMax = m_periPoints[iPeri].x();
        }
        if (m_periPoints[iPeri].y() > yMax) {
            yMax = m_periPoints[iPeri].y();
        }
    }

    Vec2 ptOut(xMax + 0.3f, yMax + 0.7f);
    int nOutInter = 0;

    for (int iPeri = 0; iPeri < m_periLens.size(); ++iPeri) {
        int iNextPeri = iPeri + 1;
        if (iPeri == m_lastPeriIdx) {
            ++iNextPeri;
        } else if (iPeri == m_lastPeriIdx + 1) {
            continue;
        }

        if (intersects(
            m_periPoints[iPeri], m_periPoints[iNextPeri], pt1o, pt3o)) {
            return true;
        }

        if (intersects(
            m_periPoints[iPeri], m_periPoints[iNextPeri], pt2o, pt3o)) {
            return true;
        }

        if (intersects(
            m_periPoints[iPeri], m_periPoints[iNextPeri], pt3o, ptOut)) {
            ++nOutInter;
        }
    }

    return nOutInter % 2;
}

void SolutionData::nextGeneration(
    const SolutionKey& key, bool useTrim, SolutionMap& rNewSols) const
{
    int nPeri = m_periLens.size();
    for (int iPeri = (useTrim ? 0 : m_lastPeriIdx); iPeri < nPeri; ++iPeri) {
        int len = m_periLens[iPeri];
        SideMap::const_iterator itCand = AllSides.lower_bound(len);
        SideMap::const_iterator itCandEnd = AllSides.upper_bound(len);
        while (itCand != itCandEnd) {
            int candTriIdx = itCand->second;
            if (!key.containsTriangle(candTriIdx) &&
                candTriIdx > key.minTriangle()) {
                addTriangle(key, iPeri, candTriIdx, rNewSols);
            }
            ++itCand;
        }
    }
}

void SolutionData::print() const {
    float cosAng = cos(m_rotAng);
    float sinAng = sin(m_rotAng);

    int nPoint = m_triPoints.size();

    for (int iPoint = 0; iPoint < nPoint; ++iPoint) {
        const Vec2& pt = m_triPoints[iPoint];
        float x = cosAng * pt.x() - sinAng * pt.y() + m_xShift;
        float y = sinAng * pt.x() + cosAng * pt.y() + m_yShift;
        std::cout << "(" << x << ", " << y << ")";

        if (iPoint % 3 == 2) {
            std::cout << std::endl;
        } else {
            std::cout << " ";
        }
    }
}

void SolutionData::addTriangle(
    const SolutionKey& key, int periIdx, int newTriIdx,
    SolutionMap& rNewSols) const {

    int triIdx = m_periTris[periIdx];
    bool flipped = m_periFlipped[periIdx];
    int len = m_periLens[periIdx];

    Connector conn1(len, triIdx, newTriIdx, flipped);
    SolutionKey newKey1(key);
    newKey1.add(newTriIdx, conn1);
    bool isNew1 = (rNewSols.find(newKey1) == rNewSols.end());

    Connector conn2(len, triIdx, newTriIdx, !flipped);
    SolutionKey newKey2(key);
    newKey2.add(newTriIdx, conn2);
    bool isNew2 = (rNewSols.find(newKey2) == rNewSols.end());

    if (!(isNew1 || isNew2)) {
        return;
    }

    SolutionData data;

    int periSize = m_periLens.size();
    data.m_periTris.resize(periSize + 1);
    data.m_periLens.resize(periSize + 1);
    data.m_periFlipped.resize(periSize + 1);
    data.m_periPoints.resize(periSize + 2);
    for (int k = 0; k <= periIdx; ++k) {
        data.m_periTris[k] = m_periTris[k];
        data.m_periLens[k] = m_periLens[k];
        data.m_periFlipped[k] = m_periFlipped[k];
        data.m_periPoints[k] = m_periPoints[k];
    }
    for (int k = periIdx + 1; k < periSize; ++k) {
        data.m_periTris[k + 1] = m_periTris[k];
        data.m_periLens[k + 1] = m_periLens[k];
        data.m_periFlipped[k + 1] = m_periFlipped[k];
        data.m_periPoints[k + 1] = m_periPoints[k];
    }
    data.m_periPoints[periSize + 1] = m_periPoints[periSize];

    data.m_lastPeriIdx = periIdx;

    data.m_periTris[periIdx] = newTriIdx;
    data.m_periTris[periIdx + 1] = newTriIdx;

    int triSize = m_triPoints.size();
    data.m_triPoints.resize(triSize + 3);
    for (int k = 0; k < triSize; ++k) {
        data.m_triPoints[k] = m_triPoints[k];
    }

    const Triangle& tri = AllTriangles[newTriIdx];
    int lenA = tri.getSideLenA();
    int lenB = tri.getSideLenB();
    int lenC = tri.getSideLenC();

    const Vec2& pt1 = m_periPoints[periIdx];
    const Vec2& pt2 = m_periPoints[periIdx + 1];

    Vec2 v = pt2 - pt1;
    v.normalize();
    Vec2 vn(v.y(), -v.x());

    float dA = lenA;
    float dB = lenB;
    float dC = lenC;

    int len1 = 0, len2 = 0;
    Vec2 pt31, pt32;

    if (len == lenA) {
        len1 = lenB;
        len2 = lenC;
        pt31 = pt1 + vn * dB;
        pt32 = pt2 + vn * dB;
    } else if (len == lenB) {
        len1 = lenC;
        len2 = lenA;
        pt31 = pt2 + vn * dA;
        pt32 = pt1 + vn * dA;
    } else {
        len1 = lenA;
        len2 = lenB;
        pt31 = pt1 + v * (dA * dA / dC) + vn * (dA * dB / dC);
        pt32 = pt1 + v * (dB * dB / dC) + vn * (dA * dB / dC);
    }

    if (isNew1) {
        data.m_periLens[periIdx] = len1;
        data.m_periLens[periIdx + 1] = len2;
        data.m_periFlipped[periIdx] = false;
        data.m_periFlipped[periIdx + 1] = false;
        data.m_periPoints[periIdx + 1] = pt31;

        data.m_triPoints[triSize] = pt1;
        data.m_triPoints[triSize + 1] = pt31;
        data.m_triPoints[triSize + 2] = pt2;

        rNewSols.insert(std::make_pair(newKey1, data));
    }

    if (isNew2) {
        data.m_periLens[periIdx] = len2;
        data.m_periLens[periIdx + 1] = len1;
        data.m_periFlipped[periIdx] = true;
        data.m_periFlipped[periIdx + 1] = true;
        data.m_periPoints[periIdx + 1] = pt32;

        data.m_triPoints[triSize] = pt1;
        data.m_triPoints[triSize + 1] = pt32;
        data.m_triPoints[triSize + 2] = pt2;

        rNewSols.insert(std::make_pair(newKey2, data));
    }
}

static void enumerateTriangles() {
    for (int c = 2; c * c <= BoxD2; ++c) {
        for (int a = 1; 2 * a * a < c * c; ++a) {
            int b = static_cast<int>(sqrt(c * c - a * a) + 0.5f);
            if (a * a + b * b == c * c) {
                Triangle tri(a, b, c);

                int triIdx = AllTriangles.size();
                AllTriangles.push_back(Triangle(a, b, c));

                AllSides.insert(std::make_pair(a, triIdx));
                AllSides.insert(std::make_pair(b, triIdx));
                AllSides.insert(std::make_pair(c, triIdx));
            }
        }
    }
}

static void eliminateInvalid(SolutionMap& rSols) {
    SolutionMap::iterator it = rSols.begin();
    while (it != rSols.end()) {
        SolutionMap::iterator itNext = it;
        ++itNext;

        SolutionData& rSolData = it->second;

        if (!rSolData.fitsInBox()) {
            rSols.erase(it);
        } else if (rSolData.selfOverlaps()) {
            rSols.erase(it);
        }

        it = itNext;
    }
}

static void trimSolutions(SolutionMap& rSols, int trimCount) {
    if (trimCount >= rSols.size()) {
        return;
    }

    SolutionMap::iterator it = rSols.begin();
    for (int iTrim = 0; iTrim < trimCount; ++iTrim) {
        ++it;
    }

    rSols.erase(it, rSols.end());
}

static void nextGeneration(
    const SolutionMap& srcSols, bool useTrim, SolutionMap& rNewSols) {
    SolutionMap::const_iterator it = srcSols.begin();
    while (it != srcSols.end()) {
        const SolutionKey& solKey = it->first;
        const SolutionData& solData = it->second;
        solData.nextGeneration(solKey, useTrim, rNewSols);
        ++it;
    }
}

static void printSolutions(const SolutionMap& sols) {
    std::cout << std::fixed;
    std::cout.precision(3);

    SolutionMap::const_iterator it = sols.begin();
    while (it != sols.end()) {
        const SolutionKey& solKey = it->first;
        solKey.print();
        const SolutionData& solData = it->second;
        solData.print();
        std::cout << std::endl;
        ++it;
    }
}

int main(int argc, char* argv[]) {
    if (argc < 3) {
        std::cerr << "usage: " << argv[0] << " width height [trimCount]"
                  << std::endl;
        return 1;
    }

    std::istringstream streamW(argv[1]);
    streamW >> BoxW;
    std::istringstream streamH(argv[2]);
    streamH >> BoxH;

    int trimCount = 0;
    if (argc > 3) {
        std::istringstream streamTrim(argv[3]);
        streamTrim >> trimCount;
    }

    BoxD2 = BoxW * BoxW + BoxH * BoxH;

    enumerateTriangles();
    int nTri = AllTriangles.size();

    SolutionMap solGen[2];
    int srcGen = 0;

    for (int iTri = 0; iTri < nTri; ++iTri) {
        const Triangle& tri = AllTriangles[iTri];

        SolutionKey solKey;
        solKey.init(iTri);

        SolutionData solData;
        solData.init(iTri);

        solGen[srcGen].insert(std::make_pair(solKey, solData));
    }

    int level = 1;

    for (;;) {
        eliminateInvalid(solGen[srcGen]);
        std::cout << "level: " << level
                  << " solutions: " << solGen[srcGen].size() << std::endl;
        if (solGen[srcGen].empty()) {
            break;
        }

        if (trimCount > 0) {
            trimSolutions(solGen[srcGen], trimCount);
        }

        solGen[1 - srcGen].clear();
        nextGeneration(solGen[srcGen], trimCount > 0, solGen[1 - srcGen]);

        srcGen = 1 - srcGen;
        ++level;
    }

    printSolutions(solGen[1 - srcGen]);

    return 0;
}
আমাদের সাইট ব্যবহার করে, আপনি স্বীকার করেছেন যে আপনি আমাদের কুকি নীতি এবং গোপনীয়তা নীতিটি পড়েছেন এবং বুঝতে পেরেছেন ।
Licensed under cc by-sa 3.0 with attribution required.