পটভূমি
ফিবোনাচি সংখ্যাগুলির সাথে বেশিরভাগই পরিচিত F(n)
:
0, 1, 1, 2, 3, 5, 8, 13, 21 ...
এগুলি এবং এর F(n) = F(n-1) + F(n-2)
সাথে পুনরাবৃত্তি ফাংশন দ্বারা গঠিত হয় । A000045F(0)=0
F(1)=1
একটি ঘনিষ্ঠভাবে সম্পর্কিত ক্রম লুকাস সংখ্যা L(m)
:
2, 1, 3, 4, 7, 11, 18, 29 ...
এই পুনরাবৃত্তির ফাংশন দ্বারা গঠিত হয় L(m) = L(m-1) + L(m-2)
সঙ্গে L(0)=2
এবং L(1)=1
। A000032
আমরা নির্মাণ সঙ্গে, এমনকি / বিজোড় সূচকের উপর ভিত্তি করে দুটি ক্রমের মধ্যে বিকল্প হতে পারে
A(x) = F(x)
যদি x mod 2 = 0
এবং A(x) = L(x)
অন্যথায়। উদাহরণস্বরূপ, যেহেতু A(4)
সমান । আমরা এই ক্রম ডাকবো লুকাস-nacci নাম্বার , :F(4)
4 mod 2 = 0
A(x)
0, 1, 1, 4, 3, 11, 8, 29, 21, 76 ...
এই পুনরাবৃত্তির ফাংশন দ্বারা গঠিত হতে পারে A(x) = 3*A(x-2) - A(x-4)
সঙ্গে A(0)=0
, A(1)=1
, A(2)=1
, এবং A(3)=4
। A005013
চ্যালেঞ্জ
ইনপুট দেওয়া হয়েছে, উপরে বর্ণিত হিসাবে সংখ্যার n
ক্রম আউটপুট করুন । সবচেয়ে কম বাইটস (বা মেটায় স্বতন্ত্রভাবে নির্ধারিত ল্যাবভিউজের জন্য বাইট-সমতুল্য ) জিতেছে।n+1
A(n)
ইনপুট
একটি একক অ-নেতিবাচক পূর্ণসংখ্যা n
।
আউটপুট
সংখ্যার একটি তালিকা যা লুਕਾਸ-ন্যাক্সি সংখ্যার থেকে পরবর্তী অনুচ্ছেদের A(0)
সাথে মিলে যায় A(n)
। উপরে বর্ণিত হিসাবে তালিকাটি অবশ্যই ক্রমযুক্ত হতে হবে।
বিধি
- স্ট্যান্ডার্ড কোড-গল্ফ বিধি এবং লুফোলের বিধিনিষেধগুলি প্রযোজ্য।
- স্ট্যান্ডার্ড ইনপুট / আউটপুট বিধি প্রযোজ্য।
- ইনপুট নম্বরটি যে কোনও উপযুক্ত বিন্যাসে থাকতে পারে: অকার্য বা দশমিক, এসটিডিআইএন, ফাংশন বা কমান্ড-লাইন আর্গুমেন্ট ইত্যাদি থেকে পড়া - আপনার পছন্দ।
- আউটপুট STDOUT এ মুদ্রিত বা ফাংশন কলের ফলাফল হিসাবে ফিরে আসতে পারে। যদি মুদ্রিত হয়, তবে পৃথক করার জন্য উপযুক্ত ডিলিমিটারগুলি অবশ্যই অন্তর্ভুক্ত করতে হবে (স্পেস-বিচ্ছিন্ন, কমা-বিচ্ছিন্ন, ইত্যাদি)।
- অতিরিক্ত হিসাবে, যদি STDOUT এ আউটপুট, আশেপাশের সাদা স্থান, নতুন লাইনের পিছনে থাকা ইত্যাদি allচ্ছিক।
- যদি ইনপুটটি একটি অ-পূর্ণসংখ্যা বা negativeণাত্মক পূর্ণসংখ্যা হয় তবে আচরণটি অপরিজ্ঞাত হওয়ার কারণে প্রোগ্রামটি কিছু বা কিছুই করতে পারে।
উদাহরণ
Input -> Output
0 -> 0
5 -> 0, 1, 1, 4, 3, 11
18 -> 0, 1, 1, 4, 3, 11, 8, 29, 21, 76, 55, 199, 144, 521, 377, 1364, 987, 3571, 2584