যতটা সম্ভব বড় স্ট্রিংয়ের জন্য সর্বোচ্চ সংখ্যক রান সংখ্যা গণনা করুন


24

[এই প্রশ্নটি একটি স্ট্রিংয়ের রান গণনা করার জন্য অনুসরণ করা ]

pস্ট্রিংয়ের সময়কাল wহ'ল ধনাত্মক পূর্ণসংখ্যা pযেমন w[i]=w[i+p] যখনই এই সমীকরণের উভয় পক্ষকে সংজ্ঞায়িত করা হয়। যাক per(w)ক্ষুদ্রতম সময়ের মাপ চিহ্নিত w। আমরা বলি যে একটি স্ট্রিং wপর্যায়ক্রমিক if যদি হয় per(w) <= |w|/2

সুতরাং অনানুষ্ঠানিকভাবে পর্যায়ক্রমিক স্ট্রিং হ'ল একটি স্ট্রিং যা অন্য স্ট্রিং থেকে অন্তত একবার পুনরাবৃত্তি হয়। কেবলমাত্র জটিলতা হ'ল স্ট্রিংয়ের শেষে আমাদের যতক্ষণ না কমপক্ষে একবারে এর সম্পূর্ণতা পুনরাবৃত্তি হয় ততক্ষণ পুনরাবৃত্ত স্ট্রিংয়ের একটি সম্পূর্ণ অনুলিপি আমাদের প্রয়োজন হয় না।

উদাহরণস্বরূপ, স্ট্রিং বিবেচনা করুন x = abcabper(abcab) = 3হিসাবে x[1] = x[1+3] = a, x[2]=x[2+3] = bএবং কোন ছোট সময়কাল আছে। স্ট্রিং abcabতাই পর্যায়ক্রমিক নয়। যাইহোক, স্ট্রিং ababaহিসাবে পর্যায়ক্রমিক হয় per(ababa) = 2

আরও উদাহরণ হিসাবে abcabca, ababababaএবং abcabcabcপর্যায়ক্রমিক হয়।

যারা রেজেক্স পছন্দ করেন তাদের জন্য, এটি স্ট্রিং পর্যায়ক্রমিক কিনা তা সনাক্ত করে:

\b(\w*)(\w+\1)\2+\b

কাজটি হ'ল দীর্ঘতম স্ট্রিংয়ে সমস্ত সর্বাধিক পর্যায়ক্রমিক সাবস্ট্রিংগুলি সন্ধান করা। এগুলিকে মাঝে মাঝে সাহিত্যে রান বলা হয় ।

একটি সাবস্ট্রিং wএকটি সর্বোচ্চ পর্যায় সাবস্ট্রিং (রান) যদি তা না হয় পর্যাবৃত্ত এবং কেউই নেই w[i-1] = w[i-1+p]কিংবা w[j+1] = w[j+1-p]। অনানুষ্ঠানিকভাবে, "রান" একই সময়ের সাথে বৃহত্তর "রান" তে অন্তর্ভুক্ত থাকতে পারে না।

যেহেতু দুটি রান সামগ্রিক স্ট্রিংয়ের বিভিন্ন স্থানে একই অক্ষরগুলির প্রতিনিধিত্ব করতে পারে, তাই আমরা অন্তর দিয়ে রানগুলি উপস্থাপন করব। অন্তর্বর্তী ক্ষেত্রে আবার উপরোক্ত সংজ্ঞা পুনরাবৃত্তি হয়।

স্ট্রিংয়ে একটি রান (বা সর্বাধিক পর্যায়ক্রমিক সাবস্ট্রিং) এর সাথে Tএকটি বিরতি [i...j]হয় j>=isuch

  • T[i...j] পিরিয়ড সহ একটি পর্যায়ক্রমিক শব্দ p = per(T[i...j])
  • এটি সর্বাধিক। সাধারণত, না হয় T[i-1] = T[i-1+p]না T[j+1] = T[j+1-p]। অনানুষ্ঠানিকভাবে, রান একই সময়ের সাথে বৃহত্তর রানের মধ্যে থাকতে পারে না।

RUNS(T)স্ট্রিংয়ে রানের সেট দ্বারা চিহ্নিত করুন T

রানের উদাহরণ

  • চার সর্বোচ্চ পর্যায় সাবস্ট্রিং (রান) স্ট্রিং T = atattattহয় T[4,5] = tt, T[7,8] = tt, T[1,4] = atat, T[2,8] = tattatt

  • স্ট্রিং T = aabaabaaaacaacacনিম্নলিখিত 7 সর্বোচ্চ পর্যায় সাবস্ট্রিং (রান) রয়েছে: T[1,2] = aa, T[4,5] = aa, T[7,10] = aaaa, T[12,13] = aa, T[13,16] = acac, T[1,8] = aabaabaa, T[9,15] = aacaaca

  • স্ট্রিংটিতে T = atatbatatbনিম্নলিখিত তিনটি রান রয়েছে। এইগুলি হল: T[1, 4] = atat, T[6, 9] = atatএবং T[1, 10] = atatbatatb

এখানে আমি 1-ইনডেক্সিং ব্যবহার করছি।

কাজটি

কোড লিখুন যাতে প্রতিটি পূর্ণসংখ্যার জন্য 2 থেকে শুরু হয়ে, আপনি দৈর্ঘ্যের কোনও বাইনারি স্ট্রিংয়ে থাকা সংখ্যক রানের সর্বাধিক সংখ্যক আউটপুট n

স্কোর

আপনার স্কোরটি nআপনি সর্বোচ্চ সর্বোচ্চ 120 সেকেন্ডে পৌঁছায় যে সবার জন্য k <= n, আপনার চেয়ে উচ্চতর সঠিক উত্তর আর কেউ পোস্ট করেনি। স্পষ্টত যদি আপনার কাছে সর্বোত্তম উত্তর থাকে তবে nআপনার পোস্টে সর্বাধিক স্কোর পাবেন score তবে, আপনার উত্তরটি সর্বোত্তম না হলেও, অন্য কেউ এটি পরাজিত করতে না পারলে আপনি এখনও স্কোরটি পেতে পারেন।

ভাষা ও গ্রন্থাগার

আপনার পছন্দ মতো যে কোনও উপলভ্য ভাষা এবং গ্রন্থাগার ব্যবহার করতে পারেন। যদি সম্ভব হয় তবে আপনার কোডটি চালাতে সক্ষম হওয়াই ভাল হবে সুতরাং যদি সম্ভব হয় তবে লিনাক্সে কীভাবে আপনার কোডটি চালাবেন / সংকলন করবেন তার সম্পূর্ণ ব্যাখ্যা অন্তর্ভুক্ত করুন।

অপটিমা উদাহরণ

নিম্নলিখিত ইন: n, optimum number of runs, example string

2 1 00
3 1 000
4 2 0011
5 2 00011
6 3 001001
7 4 0010011
8 5 00110011
9 5 000110011
10 6 0010011001
11 7 00100110011
12 8 001001100100
13 8 0001001100100
14 10 00100110010011
15 10 000100110010011
16 11 0010011001001100
17 12 00100101101001011
18 13 001001100100110011
19 14 0010011001001100100
20 15 00101001011010010100
21 15 000101001011010010100
22 16 0010010100101101001011

আমার কোড আউটপুট ঠিক কি করা উচিত?

প্রত্যেকটির জন্য nআপনার কোডকে একটি একক স্ট্রিং আউটপুট করা উচিত এবং এতে থাকা রানগুলির সংখ্যা।

আমার মেশিনের সময়গুলি আমার মেশিনে চালিত হবে। এটি একটি এএমডি এফএক্স-8350 এইট-কোর প্রসেসরে একটি স্ট্যান্ডার্ড উবুন্টু ইনস্টল। এর অর্থ হল আপনার কোডটি চালাতে আমার সক্ষম হওয়া দরকার।

শীর্ষস্থানীয় উত্তর

  • 49 সালে সি এন্ডারস ক্যাসরগ দ্বারা রচিত । একক থ্রেডেড এবং এল = 12 (2 গিগাবাইট র‌্যাম) দিয়ে চালান।
  • 27 সিডলেনে সি


1
আপনি যদি কেবলমাত্র আমাদের কেবল- {0,1}স্ট্রিংগুলি বিবেচনা করতে চান তবে দয়া করে স্পষ্ট করে বলুন। অন্যথায় বর্ণমালা সম্ভবত অসীম হতে পারে এবং আপনার টেস্টকেসগুলি কেন সর্বোত্তম হওয়া উচিত তা আমি দেখতে পাই না কারণ মনে হয় আপনি কেবল {0,1}স্ট্রিংগুলিও অনুসন্ধান করেছেন।
flawr

3
@ ফ্লোয়ার, আমি একটি বার্ষিক বর্ণমালা nপর্যন্ত স্ট্রিংগুলি অনুসন্ধান করেছি 12এবং এটি বাইনারি বর্ণমালাটিকে কখনই পরাজিত করে না। তাত্পর্যপূর্ণভাবে আমি প্রত্যাশা করব যে বাইনারি স্ট্রিংটি সর্বোত্তম হওয়া উচিত, কারণ আরও অক্ষর যুক্ত করা একটি রানের সর্বনিম্ন দৈর্ঘ্য বৃদ্ধি করে।
পিটার টেলর

1
উপরের সর্বোত্তম ফলাফলগুলিতে আপনার কাছে "12 7 001001010010" রয়েছে তবে আমার কোডটি "12 8 110110011011" পাম্প করে যেখানে পিরিয়ড 1 রান (11, 11, 00, 11, 11), পিরিয়ড 3 রান (110110, 011011) রয়েছে এবং সেখানে রয়েছে একটি পিরিয়ড 4 রান (01100110) - আমি আমার রান গণনায় কোথায় ভুল করছি?
সিডিলেনে

1
@cdlane 0000 এর একটি রান আছে। 000 এর সময়কালের কথা বিবেচনা করুন ... যত জিরো নির্বিশেষে এটি সর্বদা 1 is

উত্তর:


9

সি

এটি অনুকূল সমাধানগুলির জন্য পুনরাবৃত্তি অনুসন্ধান করে, স্ট্রিংয়ের অজানা বাকী অংশ দ্বারা শেষ হওয়া রানগুলির সংখ্যার উপরের বাউন্ডটি ব্যবহার করে ভারী ছাঁটাই করা হয়। উপরের আবদ্ধ গণনাটি একটি বিশাল দৈর্ঘ্য অনুসন্ধান সারণী ব্যবহার করে যার আকার ধ্রুবক দ্বারা নিয়ন্ত্রিত হয় L( L=11: 0.5 GiB L=12,: 2 GiB L=13,: 8 GiB)।

আমার ল্যাপটপে, এটি 100 সেকেন্ডে n = 50 এর উপরে চলে যায় ; পরবর্তী লাইনটি 142 সেকেন্ডে আসে।

#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>

#define N (8*sizeof(unsigned long long))
#define L 13
static bool a[N], best_a[N];
static int start[N/2 + 1], best_runs;
static uint8_t end_runs[2 << 2*L][2], small[N + 1][2 << 2*L];

static inline unsigned next_state(unsigned state, int b)
{
    state *= 2;
    state += b;
    if (state >= 2 << 2*L) {
        state &= ~(2 << 2*L);
        state |= 1 << 2*L;
    }
    return state;
}

static void search(int n, int i, int runs, unsigned state)
{
    if (i == n) {
        int r = runs;
        unsigned long long m = 0;
        for (int p = n / 2; p > 0; p--) {
            if (i - start[p] >= 2*p && !(m & 1ULL << start[p])) {
                m |= 1ULL << start[p];
                r++;
            }
        }
        if (r > best_runs) {
            best_runs = r;
            memcpy(best_a, a, n*sizeof(a[0]));
        }
    } else {
        a[i] = false;
        do {
            int r = runs, bound = 0, saved = 0, save_p[N/2], save_start[N/2], p, s = next_state(state, a[i]);
            unsigned long long m = 0;
            for (p = n/2; p > i; p--)
                if (p > L)
                    bound += (n - p + 1)/(p + 1);
            for (; p > 0; p--) {
                if (a[i] != a[i - p]) {
                    if (i - start[p] >= 2*p && !(m & 1ULL << start[p])) {
                        m |= 1ULL << start[p];
                        r++;
                    }
                    save_p[saved] = p;
                    save_start[saved] = start[p];
                    saved++;
                    start[p] = i + 1 - p;
                    if (p > L)
                        bound += (n - i)/(p + 1);
                } else {
                    if (p > L)
                        bound += (n - (start[p] + p - 1 > i - p ? start[p] + p - 1 : i - p))/(p + 1);
                }
            }
            bound += small[n - i - 1][s];

            if (r + bound > best_runs)
                search(n, i + 1, r, s);
            while (saved--)
                start[save_p[saved]] = save_start[saved];
        } while ((a[i] = !a[i]));
    }
}

int main()
{
    for (int n = 0; n <= N; n++) {
        if (n <= 2*L) {
            for (unsigned state = 1U << n; state < 2U << n; state++) {
                for (int b = 0; b < 2; b++) {
                    int r = 0;
                    unsigned long long m = 0;
                    for (int p = n / 2; p > 0; p--) {
                        if ((b ^ state >> (p - 1)) & 1) {
                            unsigned k = state ^ state >> p;
                            k &= -k;
                            k <<= p;
                            if (!(k & ~(~0U << n)))
                                k = 1U << n;
                            if (!((m | ~(~0U << 2*p)) & k)) {
                                m |= k;
                                r++;
                            }
                        }
                    }
                    end_runs[state][b] = r;
                }
                small[0][state] = end_runs[state][0] + end_runs[state][1];
            }
        }

        for (int l = 2*L < n - 1 ? 2*L : n - 1; l >= 0; l--) {
            for (unsigned state = 1U << l; state < 2U << l; state++) {
                int r0 = small[n - l - 1][next_state(state, 0)] + end_runs[state][0],
                    r1 = small[n - l - 1][next_state(state, 1)] + end_runs[state][1];
                small[n - l][state] = r0 > r1 ? r0 : r1;
            }
        }

        if (n >= 2) {
            search(n, 1, 0, 2U);
            printf("%d %d ", n, best_runs);
            for (int i = 0; i < n; i++)
                printf("%d", best_a[i]);
            printf("\n");
            fflush(stdout);
            best_runs--;
        }
    }
    return 0;
}

আউটপুট:

$ gcc -mcmodel=medium -O2 runs.c -o runs
$ ./runs
2 1 00
3 1 000
4 2 0011
5 2 00011
6 3 001001
7 4 0010011
8 5 00110011
9 5 000110011
10 6 0010011001
11 7 00100110011
12 8 001001100100
13 8 0001001100100
14 10 00100110010011
15 10 000100110010011
16 11 0010011001001100
17 12 00100101101001011
18 13 001001100100110011
19 14 0010011001001100100
20 15 00101001011010010100
21 15 000101001011010010100
22 16 0010010100101101001011
23 17 00100101001011010010100
24 18 001001100100110110011011
25 19 0010011001000100110010011
26 20 00101001011010010100101101
27 21 001001010010110100101001011
28 22 0010100101101001010010110100
29 23 00101001011010010100101101011
30 24 001011010010110101101001011010
31 25 0010100101101001010010110100101
32 26 00101001011010010100101101001011
33 27 001010010110100101001011010010100
34 27 0001010010110100101001011010010100
35 28 00100101001011010010100101101001011
36 29 001001010010110100101001011010010100
37 30 0010011001001100100010011001001100100
38 30 00010011001001100100010011001001100100
39 31 001001010010110100101001011010010100100
40 32 0010010100101101001010010110100101001011
41 33 00100110010001001100100110010001001100100
42 35 001010010110100101001011010110100101101011
43 35 0001010010110100101001011010110100101101011
44 36 00101001011001010010110100101001011010010100
45 37 001001010010110100101001011010110100101101011
46 38 0010100101101001010010110100101001011010010100
47 39 00101101001010010110100101101001010010110100101
48 40 001010010110100101001011010010110101101001011010
49 41 0010100101101001010010110100101101001010010110100
50 42 00101001011010010100101101001011010110100101101011
51 43 001010010110100101001011010110100101001011010010100

এখানে সব জন্য অনুকূল সিকোয়েন্স এন ≤ 64 (ঠিক lexicographically প্রথম নয়), এই প্রোগ্রাম এবং গণনার অনেক ঘন্টার একটি পরিবর্তিত সংস্করণ দ্বারা উত্পন্ন।

একটি উল্লেখযোগ্য প্রায় অনুকূল ক্রম

অসীম ফ্র্যাক্টাল ক্রমের উপসর্গ

1010010110100101001011010010110100101001011010010100101…

যে রূপান্তর 101 এর মধ্যে 101 ↦ 10100, 00 ↦ 101:

  101   00  101   101   00  101   00  101   101   00  101   101   00  …
= 10100 101 10100 10100 101 10100 101 10100 10100 101 10100 10100 101 …

জন্য-সবসময় রান অনুকূল 2 মধ্যে প্রায় অনুকূল সংখ্যার আছে বলে মনে হচ্ছে এন ≤ 64. প্রথম রানের সংখ্যা এন দ্বারা বিভক্ত অক্ষর এন / 2 ≈ 0,90983 - পন্থা (5√5 13)। তবে দেখা যাচ্ছে এটি সর্বোত্তম অনুপাত নয় — মন্তব্য দেখুন।


উত্তর এবং আপনার সংশোধন ধন্যবাদ। আপনি কী ভাবেন যে সম্ভাবনাগুলি একটি নিরপেক্ষ শক্তি সমাধানের জন্য?

1
@ ল্যাম্বিক আমি জানি না। আমি মনে করি আমার বর্তমান সমাধানটি যথেষ্ট পরিমাণে মেমরি প্রদত্ত ও (2 ^ এন) এর চেয়ে কিছুটা দ্রুত, তবে এটি এখনও ক্ষতিকারক। আমি কোনও সরাসরি সূত্র খুঁজে পাইনি যা অনুসন্ধান প্রক্রিয়া সম্পূর্ণভাবে এড়িয়ে যায়, তবে একটির উপস্থিতি থাকতে পারে। আমি অনুমান যে Thue-জলহস্তী ক্রম হয় এসিম্পটোটিকভাবে N⋅5 / 6 অনুকূল - হে (log n) রান, কিন্তু এটা প্রকৃত সর্বোত্তম পিছনে রানের একটি থাবা থাকার বলে মনে হয়।
অ্যান্ডারস কাসেরগ

মজার বিষয় হল, 42/50> 5/6।

1
@ ল্যাম্বিকের সর্বদা আশা করা উচিত যে অ্যাসিম্পটিক ভবিষ্যদ্বাণীগুলি মাঝে মাঝে অল্প পরিমাণে মারবে। তবে আসলে আমি পুরোপুরি ভুল ছিলাম — আমি আরও একটি ভাল ক্রম পেয়েছি যা মনে হয় N⋅ (13 - 5√5) / 2 ≈ N⋅0.90983 রানের কাছে পৌঁছেছে।
অ্যান্ডারস কাসেরগ

খুব চিত্তাকর্ষক. আমি মনে করি 0.90983 অনুমানটি অবশ্য ঠিক নয়। পরীক্ষা করে দেখুন bpaste.net/show/287821dc7214 । এটির দৈর্ঘ্য 1558 এবং এটি 1445 রান রয়েছে।

2

যেহেতু এটি কেবল একটি ঘোড়া ছাড়া কোনও রেস নয়, তাই আমি আমার সমাধানটি জমা দিচ্ছি যদিও এটি অ্যান্ডারস ক্যাসেরগের গতি মাত্রা এবং ক্রিপ্টিক হিসাবে মাত্র এক তৃতীয়াংশ। এর সাথে সংকলন:

gcc -O2 রান-কাউন্ট.সি-রন গণনা

আমার অ্যালগরিদমের হৃদয় একটি সরল শিফট এবং এক্সওআর স্কিম:

এখানে চিত্র বর্ণনা লিখুন

এক্সওর ফলাফলের শূন্যের একটি রান যা বর্তমান সময়ের / শিফটের চেয়ে বেশি বা সমান হয় এই সময়ের জন্য মূল স্ট্রিংয়ের একটি রান নির্দেশ করে। এখান থেকে আপনি বলতে পারবেন যে রানটি কত দিন ছিল এবং কোথায় এটি শুরু এবং শেষ হয়। কোডটির বাকি অংশটি ওভারহেড, পরিস্থিতি স্থাপন এবং ফলাফল ডিকোডিং।

আমি আশা করছি এটি লেম্বিকের মেশিনে দুই মিনিটের পরে কমপক্ষে ২৮ টি হয়ে যাবে। (আমি একটি pthread সংস্করণ লিখেছি, কিন্তু শুধুমাত্র এটি আরও ধীর চালাতে পরিচালিত।)

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdbool.h>

enum { START = 0, WIDTH } ;

// Compare and shuffle just one thing while storing two
typedef union {
    uint16_t token;
    uint8_t data[sizeof(uint16_t)];
} overlay_t;

#define SENTINAL (0)  // marks the end of an array of overlay_t

#define NUMBER_OF_BITS (8 * sizeof(uint64_t))

void period_runs(uint64_t xor_bits, uint8_t nbits, uint8_t period, overlay_t *results) {

    overlay_t *results_ptr = results;
    uint8_t count = 0;

    for (uint8_t position = 0; position < nbits; position++) {

        if (xor_bits & 1ULL) {

            if ((nbits - position) < period) {
                break;  // no room left to succeed further
            }

            if (count >= period) {  // we found a run

                results_ptr->data[START] = position - (count - 1);
                results_ptr->data[WIDTH] = period + count;
                results_ptr++;
            }

            count = 0;
        } else {

            count++;
        }

        xor_bits >>= 1;
    }

    if (count >= period) {  // process the final run, if any

        results_ptr->data[START] = 0;
        results_ptr->data[WIDTH] = period + count;
        results_ptr++;
    }

    results_ptr->token = SENTINAL;
}

void number_runs(uint64_t number, uint8_t bit_length, overlay_t *results) {

    overlay_t sub_results[bit_length];
    uint8_t limit = bit_length / 2 + 1;
    uint64_t mask = (1ULL << (bit_length - 1)) - 1;

    overlay_t *results_ptr = results;
    results_ptr->token = SENTINAL;

    for (uint8_t period = 1; period < limit; period++) {

        uint64_t xor_bits = mask & (number ^ (number >> period));  // heart of the code
        period_runs(xor_bits, bit_length - period, period, sub_results);

        for (size_t i = 0; sub_results[i].token != SENTINAL; i++) {

            bool stop = false;  // combine previous and current results

            for (size_t j = 0; !stop && results[j].token != SENTINAL; j++) {

                // lower period result disqualifies higher period result over the same span 
                stop = (sub_results[i].token == results[j].token);
            }

            if (!stop) {

                (results_ptr++)->token = sub_results[i].token;
                results_ptr->token = SENTINAL;
            }
        }

        mask >>= 1;
    }
}

int main() {

    overlay_t results[NUMBER_OF_BITS];

    for (uint8_t bit_length = 2; bit_length < 25; bit_length++) {

        int best_results = -1;
        uint64_t best_number = 0;

        for (uint64_t number = 1ULL << (bit_length - 1); number < (1ULL << bit_length); number++) {

            // from the discussion comments, I should be able to solve this
            // with just bit strings that begin "11...", so toss the rest
            if ((number & (1ULL << (bit_length - 2))) == 0ULL) {

                continue;
            }

            uint64_t reversed = 0;

            for (uint8_t i = 0; i < bit_length; i++) {

                if (number & (1ULL << i)) {

                    reversed |= (1ULL << ((bit_length - 1) - i));
                }
            }

            if (reversed > number) {

                continue;  // ~ 1/4 of bit_strings are simply reversals, toss 'em
            }

            number_runs(number, bit_length, results);
            overlay_t *results_ptr = results;
            int count = 0;

            while ((results_ptr++)->token != SENTINAL) {

                count++;
            }

            if (count > best_results) {

                best_results = count;
                best_number = number;
            }
        }

        char *best_string = malloc(bit_length + 1);
        uint64_t number = best_number;
        char *string_ptr = best_string;

        for (int i = bit_length - 1; i >= 0; i--) {

            *(string_ptr++) = (number & (1ULL << i)) ? '1' : '0';
        }

        *string_ptr = '\0';

        printf("%u %d %s\n", bit_length, best_results, best_string);

        free(best_string);
    }

    return 0;
}

আউটপুট:

> gcc -O2 run-count.c -o run-count
> ./run-count
2 1 11
3 1 110
4 2 1100
5 2 11000
6 3 110011
7 4 1100100
8 5 11001100
9 5 110010011
10 6 1100110011
11 7 11001100100
12 8 110110011011
13 8 1100100010011
14 10 11001001100100
15 10 110010011001000
16 11 1100100110010011
17 12 11001100100110011
18 13 110011001001100100
19 14 1101001011010010100
20 15 11010110100101101011
21 15 110010011001001100100
22 16 1100101001011010010100
23 17 11010010110100101001011
24 18 110100101001011010010100
25 19 1100100110010001001100100
26 20 11010010100101101001010010
27 21 110010011001000100110010011
28 22 1101001010010110100101001011

স্বাগতম দ্বিতীয় ঘোড়া! ছোট প্রশ্ন, আপনি এবং অন্য উত্তরগুলি -O3 এর পরিবর্তে -O2 এর পরামর্শ দেয় কেন?

@ লিম্বিক, -O2 অপ্টিমাইজেশান সহ, আমি কোড চলমান সময়ের পার্থক্যটি পরিমাপ করতে পারি তবে -O3 দিয়ে আমি কোনও অতিরিক্ত পরিমাপ করতে পারিনি। যেহেতু আমরা অনুমিতভাবে গতির জন্য নিরাপদে বাণিজ্য করছি, আমি সর্বোচ্চ স্তরটি পেয়েছি যা আসলে একটি পার্থক্য সবচেয়ে ভাল। আপনি যদি বিশ্বাস করেন যে আমার কোডটি -O3 এর সাথে উচ্চতর হবে তবে এর জন্য যান!
সিড্লেনে

-O3"অনিরাপদ" হওয়ার উদ্দেশ্যে নয়। এটি অটো-ভেক্টরাইজেশন সক্ষম করে, তবে সম্ভবত এখানে ভেক্টরাইজ করার কিছুই নেই। এটি কখনও কখনও কোডকে ধীর করে দেয়, উদাহরণস্বরূপ যদি এটি এমন কোনও শাখার জন্য শাখাবিহীন সেমিওভ ব্যবহার করে যেখানে একটি শাখা খুব ভালভাবে পূর্বাভাস দিত। তবে সাধারণত এটি সাহায্য করা উচিত। সাধারণত কোন জিসিসি বা ঝনঝন একটি নির্দিষ্ট লুপের জন্য আরও ভাল কোড তৈরি করে তা দেখতে এটি সাধারণত ঝনঝন করার চেষ্টা করার মতো। এছাড়াও, এটি প্রায়শই ব্যবহার করতে সহায়তা করে -march=nativeবা কমপক্ষে -mtune=nativeআপনি যদি এখনও বাইনারি চান যেখানে কোথাও চলে।
পিটার কর্ডেস
আমাদের সাইট ব্যবহার করে, আপনি স্বীকার করেছেন যে আপনি আমাদের কুকি নীতি এবং গোপনীয়তা নীতিটি পড়েছেন এবং বুঝতে পেরেছেন ।
Licensed under cc by-sa 3.0 with attribution required.