একটি ব্যালট নম্বর , যা আমরা বি কে লেবেল করব , হ'ল বি থেকে 1 (বি + 1) / 2 এর মাধ্যমে সংখ্যাগুলি সাজানোর বিভিন্ন পদ্ধতি যা প্রতিটি সারি এবং কলাম কোনও ক্রমবর্ধমান ক্রমে থাকে। প্রথম চারটি ব্যালট সংখ্যা হ'ল:
a(0) = 1
a(1) = 1
a(2) = 1
a(3) = 2
a(3)
2 হ'ল যার অর্থ 1 টি থেকে এই 3(3+1)/2 = 6
জাতীয় ত্রিভুজে সংখ্যাগুলি সাজানোর 2 উপায় রয়েছে :
1 1
2 3 or 2 4
4 5 6 3 5 6
দেখুন OEIS ক্রম এন্ট্রি আরো বিস্তারিত জানার জন্য।
আপনার চ্যালেঞ্জটি, একটি ব্যালট ত্রিভুজ দেওয়া, এটির যথার্থতা যাচাই করা। যদি এটি ব্যালট ত্রিভুজটির শর্তগুলি পূরণ করে (সারি এবং কলামগুলি বাড়ছে), ত্রিভুজটি সঠিকভাবে সাজানোর জন্য আপনাকে অন্য কতগুলি উপায় (ইনপুটটিতে বাদ দিয়ে ) আউটপুট করা উচিত । যদি ইনপুট ত্রিভুজটি ভুলভাবে নির্মিত হয় তবে আপনার কিছুই আউটপুট করা উচিত নয়।
চলমান নিউলাইনগুলি অনুমোদিত are
ইনপুট
সংখ্যার ত্রিভুজ যা বৈধ ব্যালটের ত্রিভুজ হতে পারে বা নাও হতে পারে। উদাহরণ স্বরূপ:
1
2 3
4 5 6
1
10 5
9 8 2
7 6 4 3
1
3 2
9
2 11
14 3 5
12 8 1 7
15 13 10 4 6
1
2 3
4 5 6
7 8 9 10
11 12 13 14 15
16 17 18 19 20 21
আউটপুট
যদি ইনপুটটি একটি বৈধ ব্যালট ত্রিভুজ হয়, তবে বৈধ ব্যালট ত্রিভুজটিতে একই সংখ্যাগুলি সাজানোর জন্য অবশিষ্ট সংখ্যা। যদি ইনপুটটি কোনও বৈধ ব্যালট ত্রিভুজ না হয়, কিছুই নয়। উদাহরণস্বরূপ, উপরের ইনপুটগুলি এই আউটপুটগুলি উত্পাদন করে ( <nothing>
সত্যিকারের খালি আউটপুটটির জন্য স্থানধারক):
1 # the same as a(3)-1
<nothing>
<nothing>
<nothing>
33591 # the same as a(6)-1
স্কোরিং
এটি কোড-গল্ফ : যথারীতি সর্বনিম্ন বাইট-কাউন্ট জেতে। টাইব্রেকার প্রথম পোস্ট করা হয়।
1/4 5/2 3 6
বৈধ নয়?