রিড-সলোমন কোডগুলি ডিকোডিংয়ের জন্য ওয়েলচ-বেরলেক্যাম্প অ্যালগরিদমে, একটিকে পয়েন্টগুলির একটি তালিকা দেওয়া হয় সাথে একটি বার্তা উপস্থাপন ত্রুটি অজানা স্থানে (এবং আলগোরিদিম দেওয়া হয়)। আউটপুটটি প্রদত্ত সমস্ত পয়েন্টের মধ্যে একটি ত্রুটি ঘটেছিল ব্যতীত একটি বহুভুজ যা is
পদ্ধতির মধ্যে ফর্মের রৈখিক সমীকরণের একটি সিস্টেম সমাধান করা জড়িত
সবার জন্য কোথায় ডিগ্রি আছে এবং সর্বাধিক ডিগ্রি আছে । ভেরিয়েবলগুলি এর সহগ হয় এবং ।
সেটা নিশ্চিত করতে ডিগ্রি আছে একটি সাধারণত সহগ বাধা যোগ করে উপরের রৈখিক সিস্টেমের 1 যাইহোক, অনুশীলনে একটি অগত্যা জানেন না। এটির সাথে মোকাবিলা করার একটি অদক্ষ (তবে এখনও বহুপদী সময়) উপায় হল চেষ্টা করা সমস্ত মান দিয়ে শুরু সমাধান না পাওয়া পর্যন্ত নামা হচ্ছে।
আমার প্রশ্নটি: এটি নির্ধারণের জন্য আরও কার্যকর উপায় আছে কি?? বিকল্পভাবে, লিনিয়ার সিস্টেমে এমন কোনও পরিবর্তন রয়েছে যা একজনকে উপরের বাউন্ডটি ব্যবহার করতে দেয় সঠিক মান পরিবর্তে?
বিশেষত আমি রিড-সলোমন কোডগুলির জন্য এই নির্দিষ্ট ডিকোডারটি ব্যবহার করতে চাই, এবং অন্যান্য কৌশলগুলির উপর ভিত্তি করে একেবারে পৃথক অ্যালগরিদম নয়।
ডিডাব্লু এর উত্তরের প্রতিক্রিয়া হিসাবে, এখানে আমার কাজের উদাহরণ। সব কিছু করা হয় মডুলো 7।
plain message is: [2, 3, 2]
polynomial is: 2 + 3 t^1 + 2 t^2
encoded message is: [[0, 2], [1, 0], [2, 2], [3, 1], [4, 4]]
corrupted message is: [[0, 2], [1, 0], [2, 3], [3, 1], [4, 4]]
সুতরাং ত্রুটি তৃতীয় পয়েন্ট।
কখন প্রশ্নে বহুপদী সমীকরণটি
এবং প্লাগ ইন সিস্টেমটি ম্যাট্রিক্স আকারে দেয়:
[2, 0, 0, 6, 0, 0, 0, 0, 0]
[0, 0, 0, 6, 6, 6, 6, 6, 0]
[3, 6, 5, 6, 5, 3, 6, 5, 0]
[1, 3, 2, 6, 4, 5, 1, 3, 0]
[4, 2, 1, 6, 3, 5, 6, 3, 0]
[0, 0, 1, 0, 0, 0, 0, 0, 1]
শেষ সারিটি যে সীমাবদ্ধতা । আমরা পাই গাউসিয়ান নির্মূলের প্রয়োগ
[1, 0, 0, 0, 0, 0, 1, 4, 0]
[0, 1, 0, 0, 0, 0, 3, 3, 1]
[0, 0, 1, 0, 0, 0, 0, 0, 1]
[0, 0, 0, 1, 0, 0, 2, 1, 0]
[0, 0, 0, 0, 1, 0, 2, 2, 5]
[0, 0, 0, 0, 0, 1, 4, 5, 2]
এবং উভয় বিনামূল্যে ভেরিয়েবলের জন্য 1 বাছাই করা আমরা এর সমাধান ভেক্টর পাই
[2, 2, 1, 4, 1, 0, 1, 1]
যা অনুবাদ করে
E is 2 + 2 t^1 + 1 t^2
Q is 4 + 1 t^1 + 0 t^2 + 1 t^3 + 1 t^4
এবং বিভক্ত হয় না । মনে রাখবেন যে কারণ হিসাবে
জন্য আমি একটি ভাল সমাধান পেতে:
system is:
[2, 0, 6, 0, 0, 0, 0]
[0, 0, 6, 6, 6, 6, 0]
[3, 6, 6, 5, 3, 6, 0]
[1, 3, 6, 4, 5, 1, 0]
[4, 2, 6, 3, 5, 6, 0]
[0, 1, 0, 0, 0, 0, 1]
reduced system is:
[1, 0, 0, 0, 0, 0, 5]
[0, 1, 0, 0, 0, 0, 1]
[0, 0, 1, 0, 0, 0, 3]
[0, 0, 0, 1, 0, 0, 3]
[0, 0, 0, 0, 1, 0, 6]
[0, 0, 0, 0, 0, 1, 2]
solution is [5, 1, 3, 3, 6, 2]
Q is 3 + 3 t^1 + 6 t^2 + 2 t^3
E is 5 + 1 t^1
P(x) = 2 + 3 t^1 + 2 t^2 # this is correct!
r(x) = 0
মনে রাখবেন যে উপরোক্ত কাউন্টারেক্সেক্সটি কোডটি স্ক্র্যাচ থেকে লেখা হয়েছিল (এটি প্রথমত আমি চেষ্টা করেছি), সমাধানগুলি নিজের হাতে বৈধ কিনা তা পরীক্ষা করতে পারে, সুতরাং আমার কোডটি বগি হলেও এটি এখনও দাবির বৈধ প্রতিদ্বন্দ্বী ample যে ব্যবহার করে কাজ করে।