সম্পাদনা (তারা বি দ্বারা): আমি এখনও তার একটি প্রমাণের একটি রেফারেন্সে আগ্রহী , কারণ আমার নিজের কাগজের জন্য আমাকে এটি প্রমাণ করতে হয়েছিল।
আমি এই কাগজে প্রদর্শিত থিয়েরেম 4 এর প্রমাণ খুঁজছি:
লিউ এবং ওয়েনার দ্বারা প্রসঙ্গমুক্ত ভাষাগুলির ছেদগুলির একটি অসীম শ্রেণিবিন্যাস।
উপপাদ্য 4: একটি -dimensional অ্যাফিন নানাবিধ অ্যাফিন manifolds একটি সসীম ইউনিয়ন প্রতিটি যা মাত্রা হল যেমন ব্যক্ত করা যায় এমন নয় এন - 1 বা তার কম।
- প্রমাণের কোনও রেফারেন্স কি কেউ জানেন?
- যদি বহুগুণ সীমাবদ্ধ হয় এবং আমরা উপাদানগুলির উপর একটি প্রাকৃতিক আদেশ সংজ্ঞায়িত করি, তবে জালাগুলির ক্ষেত্রে কোনও অনুরূপ বক্তব্য আছে?
উপপাদ্যটি বোঝার জন্য কিছু পটভূমি:
সংজ্ঞা: মূলত সংখ্যার সেট হয়ে উঠুক । ( Λ x + ( 1 - λ ) y ) ∈ এম যখন x ∈ এম , ওয়াই ∈ এম , এবং λ ∈ কিউ হয় তবে একটি উপসেট এম ⊆ কিউ এন হল একটি মাইনিফোল্ড ।
সংজ্ঞা: একটি অ্যাফিন নানাবিধ একটি অ্যাফিন নানাবিধ সমান্তরাল মনে করা হয় এম যদি এম ' = এম + + একটি কিছু জন্য একটি ∈ প্রশ্ন এন ।
উপপাদ্য: প্রতিটি খালি খালি মাইনিফোল্ড একটি অনন্য সাবস্কেস কে এর সমান্তরাল । এই কে দেওয়া হয় কে = { x এর - Y : এক্স , Y ∈ এম }
সংজ্ঞা: মাত্রা একটি খালি অ্যাফিন নানাবিধ এর এটি subspace সমান্তরাল মাত্রা নেই।