রিড-দু'বার বিপরীত সিএনএফ সূত্রে প্রতিটি চলক দু'বার প্রদর্শিত হয়, একবার ইতিবাচক এবং একবার নেতিবাচক।
আমি সমস্যাটিতে আগ্রহী, যা সিএনএফ সূত্রের বিপরীতে একটি পঠন-বারের বিপরীতে সন্তুষ্টিত কার্যভার সংখ্যার সমতা গণনা করে।
আমি এ জাতীয় সমস্যার জটিলতা সম্পর্কে কোনও রেফারেন্স খুঁজে পাইনি। নিকটতম আমি এটির সন্ধান করতে পেরেছি যে গণনা সংস্করণ হল # পি- অসম্পূর্ণ ( এই কাগজের 6.3 অনুচ্ছেদ দেখুন )।
আপনার সাহায্যের জন্য আগাম ধন্যবাদ।
আপডেট 10 এপ্রিল 2016
- ইন এই কাগজ , সমস্যা হতে দেখানো হয় ⊕ পি তবে সূত্র থেকে হ্রাস দ্বারা উত্পাদিত, -complete 3 স্যাট CNF মধ্যে নয়, এবং যত তাড়াতাড়ি আপনি এটা CNF রূপান্তর হওয়ার চেষ্টা আপনি যদি একটি পেতে তিনবার পড়ুন সূত্র।
- একঘেয়েমি সংস্করণ হতে দেখানো হয় ⊕ পি মধ্যে -complete এই কাগজ । এই জাতীয় গবেষণাপত্রে, section আরটিডব্লিউ-ওপেন-সিএনএফ-এর দ্রুত ধারা 4 এর শেষে উল্লেখ করা হয়েছে: বীরত্বপূর্ণ বলেছেন যে এটি হ্রাসপ্রাপ্ত। অধঃপতিত হওয়ার সঠিক অর্থ কী, তা আমার কাছে পরিষ্কার নয় বা শক্ততার দিক থেকে এটি কী বোঝায়।
আপডেট 12 ই এপ্রিল 2016
এছাড়া জানেন যে যদি কেউ কি কখনো জটিলতা চর্চিত হয়েছে খুব আকর্ষণীয় হবে সমস্যা। দুটি বারের বিপরীতে সিএনএফ ফর্মুলা দেওয়া, এই জাতীয় সমস্যাটি ভেরিয়েবলের সত্য হিসাবে নির্ধারিত সন্তোষজনক কার্যভারের সংখ্যা এবং সত্য হিসাবে সেট করে এমন একটি ভেরিয়েবলের সংখ্যক সন্তোষজনক নিয়োগের সংখ্যার মধ্যে পার্থক্য গণনা করতে বলে। আমি এটি সম্পর্কে কোন সাহিত্য খুঁজে পাই না।
29 শে মে 2016 আপডেট করুন
এমিল জেবেক তার মন্তব্যে যেমন উল্লেখ করেছেন, ভ্যালেন্টিয়ান বলেছিলেন যে সমস্যাটি হ্রাস পেয়েছে । তিনি কেবল বলেছিলেন যে এই জাতীয় সমস্যার আরও সীমিত সংস্করণ, ⊕ Pl-Rtw-Opp-3CNF হ্রাসপ্রাপ্ত । এরই মধ্যে, অবক্ষয়ের সঠিক অর্থ কী তা আমি এখনও অবধি জানি না, তবে কমপক্ষে এখন এটি স্পষ্ট বলে মনে হয়েছে যে এটি ভাববাদী শক্তির অভাবের প্রতিশব্দ।