নিয়মিত ভাষায় কোনও শব্দ অর্জনের জন্য চিঠিগুলি নির্ধারিত হতে পারে কিনা তা পরীক্ষা করে


23

আমি ঠিক নিয়মিত ভাষা এলL একটি বর্ণমালার উপর ΣΣ এবং আমি নিম্নলিখিত সমস্যা বিবেচনা করুন যে আমি ফোন চিঠি সিডিউলিং জন্য এলL । অনানুষ্ঠানিকভাবে, ইনপুটটি আমাকে প্রতিটি অক্ষরের জন্য এনn অক্ষর এবং একটি অন্তর দেয় (যেমন, একটি ন্যূনতম এবং সর্বাধিক অবস্থান) এবং আমার লক্ষ্য প্রতিটি অক্ষরকে তার বিরতিতে এমনভাবে স্থাপন করা যাতে কোনও দুটি অক্ষর একই অবস্থানে ম্যাপ করা না হয় এবং যাতে ফলস্বরূপ এন-n লেটার শব্দটি এল তে রয়েছেL । আনুষ্ঠানিকভাবে:

  • ইনপুট: এনn triples ( একটি আমি , আমি , r আমি )(ai,li,ri) যেখানে একটি আমিΣaiΣ এবং 1 আমিr আমিএন1lirin পূর্ণসংখ্যা
  • আউটপুট: একটি bijection হয় : { 1 , ... , এন } { 1 , ... , এন }f:{1,,n}{1,,n} যেমন যে আমি( আমি ) R আমিlif(i)ri সবার জন্য আমিi আর একটি - 1 ( 1 )একটি - 1 ( এন )এলaf1(1)af1(n)L

স্পষ্টতই এই সমস্যাটি এনপি-তে রয়েছে, একটি বাইজেকশন এফ অনুমান করে এবং পিটিটাইমে এল-এরf সদস্যপদ পরীক্ষা করে । আমার প্রশ্ন: নিয়মিত ভাষা এল কি এমন আছে যে এল এর জন্য লেটার শিডিউলিং সমস্যা এনপি-হার্ড?LLL

কিছু প্রাথমিক পর্যবেক্ষণ:

  • মনে হয় একইরকম সমস্যাগুলি শিডিয়ুলিংয়ে অধ্যয়ন করা হয়েছে: আমরা কোনও একক মেশিনে ইউনিট-কস্টের সময়সূচি হিসাবে শুরুর সময় এবং তারিখগুলি সম্মানের ক্ষেত্রে সমস্যাটি দেখতে পেতাম। যাইহোক, এই পরবর্তী সমস্যাটি অবশ্যই স্পষ্টতই পিটিটাইমে একটি লোভী পদ্ধতির সাথে, এবং আমি যে মামলার কাজগুলির লেবেলযুক্ত সেটির জন্য নির্ধারিত সাহিত্যে কিছুই দেখতে পাই না এবং আমরা একটি লক্ষ্য নিয়মিত ভাষায় কোনও শব্দ অর্জন করতে চাই।
  • সমস্যা দেখতে অন্য একটি উপায় একটি বিশেষ ক্ষেত্রে হয় দ্বিপাক্ষিক সর্বাধিক ম্যাচিং সমস্যা (অক্ষর এবং অবস্থানের মধ্যে), কিন্তু আবার বাধ্যতা যে আমরা পড়া উচিত নয় প্রকাশ করা কঠিন এলL
  • নির্দিষ্ট ঘটনাতে যেখানে সালে এলL ফর্ম একটি ভাষা U *u কিছু সংশোধন করা হয়েছে শব্দের জন্য তোমার দর্শন লগ করাu (যেমন, ( একটি ) *(ab) ), তারপর জন্য চিঠি সিডিউলিং সমস্যা এলL একটি সহজ লোভী আলগোরিদিম সঙ্গে PTIME রয়েছে: বাম দিক থেকে শব্দ তৈরী ডানদিকে, এবং উপলব্ধ বর্ণের প্রতিটি পদের এক যা সঠিক আপেক্ষিক এ করা এলL এবং ক্ষুদ্রতম সময় আছে আমিri । (যদি সেখানে উপলব্ধ অক্ষর কোনটি সঠিক হয়, ব্যর্থ হয়।) কিন্তু, এই নির্বিচারে নিয়মিত ভাষায় সাধারণের নেই এলL কারণ ভাষার জন্য আমরা যা চিঠির ধরনের ব্যবহার পছন্দ থাকতে পারে।
  • দেখে মনে হচ্ছে একটি গতিশীল অ্যালগরিদমটি কাজ করা উচিত তবে বাস্তবে এটি এত সহজ নয়: মনে হচ্ছে আপনি এতক্ষণে কোন অক্ষরের অক্ষরটি মুখস্থ করতে হবে। বস্তুত, যখন একটি শব্দ বাঁ দিক থেকে ডানদিকে, যখন আপনি একটি অবস্থান পৌঁছেছেন বিল্ডিং আমিi , আপনার রাষ্ট্র যা অক্ষর আপনি এ পর্যন্ত ধ্বংস উপর নির্ভর করে। আপনি পুরো সেটটি মুখস্থ করতে পারবেন না কারণ তখন খুব বেশি রাজ্য হবে। তবে এটি "সংক্ষিপ্ত" করা এত সহজ নয় (উদাহরণস্বরূপ, প্রতিটি অক্ষরের কতগুলি অনুলিপি ব্যবহার করা হয়েছিল) কারণ আপনি কোন অনুলিপি ব্যবহার করেছেন তা মনে করার পরে মনে হয় যে আপনি সেগুলি গ্রাস করেছেন (পরে আপনি গ্রাস করেছেন) তাদের, আরও অক্ষর উপলব্ধ ছিল)। এমনকি ( a b | b a ) language এর মতো একটি ভাষাও রয়েছে (ab|ba)সেখানে ইতিমধ্যে সম্পর্কে যখন আপনি নিতে নির্বাচন করা উচিত সীমাবদ্ধতার জটিল হতে পারে একটি ab এবং আপনি নিতে নির্বাচন করা উচিত যখন একটিba নির্ভর করে যা, অক্ষরের উপর আপনি পরে প্রয়োজন হবে ও অক্ষর উপলব্ধ করে।
  • যাইহোক, নিয়মিত ভাষা এলL ঠিক করা হয়েছে এবং এত তথ্য মুখস্থ করতে পারে না, তাই এনপি-হার্ড সমস্যাটি খুঁজে পেতে আমার বেশ কষ্ট হচ্ছে, যা থেকে আমি হ্রাস করতে পারি।

আপনি কি পিটিটাইমে কিছু এল এর জন্য এনপি-পূর্ণতা পেতে পারেন?
ল্যান্স ফোর্টনো

3
নিবন্ধন করুন আপনি একটি 3 সিএনএফ প্যাড করতে পারেন যাতে প্রতিটি পরিবর্তনশীল এমনকি সংখ্যক লিটারেলের মধ্যে ঘটে এবং প্রতিটি পরপর দু'টি ঘটনাকে উপেক্ষিত করা হয়। X i কে 0 i বা 1 i তে এনকোড করুন , তারপরে বর্ণের সময়সূচী উদাহরণে চিহ্নগুলি ( , ) , , fixed স্থির করা হয়েছে যখন বাকীগুলি অর্ধ 0 's এবং অর্ধ 1 ' s ' বহুপদী সময়ে স্ট্রিংটি প্যাডেড 3 সিএনএফ এনকোড করে যা সত্যের জন্য মূল্যায়ন করে তা পরীক্ষা করতে পারে। xi0i1i(,),,01
উইলার্ড ঝান

You can also generalize the problem to "arbitrary positions" (not limited to 1..n). Perhaps it's easier to prove hardness (if it's hard).
Marzio De Biasi

@MarzioDeBiasi: I'm not sure I understand, do you mean that the position of letters could be any arbitrary subset rather than an interval? I don't know if this is hard (it starts resembling a bit the exact perfect matching problem), but the version with intervals allows for a greedy algorithm when L=uL=u so I have some hope that it could be easier.
a3nm

@ a3nm: না আমার অর্থ এই নয় যে আপনি সীমাবদ্ধতা r i drop n বাদ দিয়ে সাধারণ করতে পারবেন ; আপনি এল একটি শব্দ জন্য অনুরোধ যা সেখানে অন্তত একটি চিঠি একটি আমি সীমার মধ্যে [ আমিr i ] ; অন্য কথায় আপনি দৈর্ঘ্য n এর পুরো শব্দটি "বিল্ড" করেন না , তবে নির্ধারিত দৈর্ঘ্যের এমন একটি শব্দ জিজ্ঞাসা করুন যাতে অনুমোদিত ব্যাপ্তিতে বর্ণিত অক্ষরগুলি থাকে। আমি জানি না এটি সমস্যার জটিলতা পরিবর্তন করে কিনা, তবে এই ক্ষেত্রে আপনাকে অবশ্যই "সূচী "গুলির মুখোমুখি হতে হবে যা সম্ভবত ইনপুটটির দৈর্ঘ্যের দ্বারা বহিরাগতভাবে আবদ্ধ নয়। rinai[li..ri]n
মারজিও দে বায়াসি

উত্তর:


7

সমস্যাটি এল = -এর জন্য এনপি-হার্ড যেখানে নিম্নলিখিত শব্দগুলির সমন্বিত সীমাবদ্ধ ভাষা:L=AA

  • x 111 , x 000 ,x111x000
  • y 100 , y 010 , y 001 ,y100y010y001
  • 00 সি 11 , 01 সি 10 , 10 সি 01 , এবং 11 সি 0000c1101c1010c0111c00

The reduction is from the problem Graph Orientation, which is known to be NP-hard (see https://link.springer.com/article/10.1007/s00454-017-9884-9). In this problem, we are given a 3-regular undirected graph in which every vertex is labeled either "{1}{1}" or "{0,3}{0,3}". The goal is to direct the edges of the graph so that the outdegree of every vertex is in the set labeling that vertex.

The reduction needs to take as input a Graph Orientation instance and produce a list of triples as output. In this reduction, the triples we output will always satisfy certain constraints. These constraints are listed below, and we will refer to a list of triples as valid if and only if they satisfy these constraints:

  • The characters xx, yy, and cc are only given intervals containing exactly one index. In other words, whenever these characters are placed, they are placed in specific locations.
  • For every triple (i,l,r)(i,l,r) present in the instance with i{0,1}i{0,1}, the triple (1i,l,r)(1i,l,r) is also present.
  • If (α,l,r)(α,l,r) and (α,l,r)(α,l,r) are both triples present in the instance then either l<lr<rl<lr<r, or l<lr<rl<lr<r, or {α,α}={0,1}{α,α}={0,1} with l=l<r=rl=l<r=r.
  • If (α,l,r)(α,l,r) is a triple then the number of triples (α,l,r)(α,l,r) with llrrllrr is exactly rl+1rl+1.

Note the following lemma, proved at the end of this post.

Lemma: for a valid list of triples, the characters xx, yy, and cc must be placed exactly as indicated by the triples, and for any pair of triples (0,l,r)(0,l,r) and (1,l,r)(1,l,r), the two characters for that triple must be placed at indices ll and rr.

Then the idea of the reduction is the following.

We use pairs of triples (0,l,r)(0,l,r), and (1,l,r)(1,l,r) to represent edges. The edge goes between endpoints at index ll and at index rr. Assuming we produce a valid list of triples, the characters from these two triples must be placed at ll and rr, so we can treat the order in which they are placed as indicating the direction of the edge. Here 11 is the "head" of the edge and 00 is the "tail". In other words, if the 11 is placed at rr then the edge points from ll to rr and if the 11 is placed at ll then the edge points from rr to ll.

To represent vertices, we place an xx or yy character at an index and use the next three characters as the endpoints of the three edges which touch the vertex. Note that if we place an xx, all three edges at the vertex must point in the same direction (all into the vertex or all out of the vertex) simply due to the strings that are in finite language AA. Such vertices have outdegree 00 or 33, so we place an xx exactly for the vertices labeled {0,3}{0,3}. If we place a yy, exactly one of the three edges at the vertex must point in the same direction due to the strings in AA. Such vertices have outdegree 11, so we place a yy exactly for the vertices labeled {1}{1}.

In some sense, we are done. In particular, the correspondence between solving this instance and solving the Graph Orientation instance should be clear. Unfortunately, the list of triples we produce may not be valid, and so the "edges" described may not work as intended. In particular, the list of triples might not be valid because the condition that the intervals from the triples must always contain each other might not hold: the intervals from two edges may overlap without one containing the other.

To combat this, we add some more infrastructure. In particular, we add "crossover vertices". A crossover vertex is a vertex of degree 44 whose edges are paired such that within each pair one edge must point into the crossover vertex and one out. In other words, a crossover vertex will behave the same as just two "crossing" edges. We represent a crossover vertex by placing the character cc at some index ii. Then note that the language AA constrains the characters at i1i1 and i+2i+2 to be opposite (one 00 and one 11) and the characters at i2i2 and i+1i+1 to be opposite. Thus, if we use these indices as the endpoints for the four edges at the crossover vertex, the behavior is exactly as described: the four edges are in pairs and among every pair one points in and one points out.

How do we actually place these crossovers? Well suppose we have two intervals (l,r)(l,r) and (l,r)(l,r) which overlap. WLOG, l<l<r<rl<l<r<r. We add the crossover character into the middle (between ll and rr). (Let's say that all along we spaced everything out so far that there's always enough space, and at the end we will remove any unused space.) Let the index of the crossover character be ii. Then we replace the four triples (0,l,r)(0,l,r), (1,l,r)(1,l,r), (0,l,r)(0,l,r), and (1,l,r)(1,l,r) with eight triples with two each (one with character 00 and one with character 11) for the following four intervals (l,i1)(l,i1), (i+2,r)(i+2,r), (l,i2)(l,i2), (i+1,r)(i+1,r). Notice that the intervals don't overlap in the bad way anymore! (After this change, if two intervals overlap, one is strictly inside the other.) Furthermore, the edge from ll to rr is replaced by an edge from ll to the crossover vertex followed by the edge from there to rr; these two edges are paired at the crossover vertex in such a way that one is pointed in and one is pointed out; in other words, the two edges together behave just like the one edge they are replacing.

In some sense, putting in this crossover vertex "uncrossed" two edges (whose intervals were overlapping). It is easy to see that adding the crossover vertex can't cause any additional edges to become crossed. Thus, we can uncross every pair of crossing edges by inserting enough crossover vertices. The end result still corresponds to the Graph Orientation instance, but now the list of triples is valid (the properties are all easy to verify now that we have "uncrossed" any crossing edges), so the lemma applies, the edges must behave as described, and the correspondence is actually an equivalence. In other words, this reduction is correct.


proof of lemma

Lemma: for a valid list of triples, the characters xx, yy, and cc must be placed exactly as indicated by the triples, and for any pair of triples (0,l,r)(0,l,r) and (1,l,r)(1,l,r), the two characters for that triple must be placed at indices ll and rr.

proof:

We proceed by induction on the triples by interval length. In particular, our statement is the following: for any kk if some triple has interval length kk then the character in that triple must be placed as described in the lemma.

Base case: for k=0k=0, the triple must be placing a character xx, yy, or cc at the single index inside the interval. This is exactly as described in the lemma.

Inductive case: assume the statement holds for any kk less than some kk. Now consider some triple with interval length kk. Then that triple must be of the form (i,l,r)(i,l,r) with r=l+k1r=l+k1 and i{0,1}i{0,1}. The triple (1i,l,r)(1i,l,r) must also be present. The number of triples (α,l,r)(α,l,r) with llrrllrr is exactly rl+1=krl+1=k. These triples include triples (0,l,r)(0,l,r) and (1,l,r)(1,l,r) but also k2k2 other triples of the form (α,l,r)(α,l,r) with l<lr<rl<lr<r. These other triples all have interval length smaller than kk, so they all must place their characters as specified in the lemma. The only way for this to occur is if these triples place characters in every index starting at index l+1l+1 and ending at index r+1r+1. Thus, our two triples (0,l,r)(0,l,r) and (1,l,r)(1,l,r) must place their characters at indices ll and rr, as described in the lemma, concluding the inductive case.

By induction, the lemma is correct.


Thanks a lot for this elaborate proof, and with a very simple language! I think it is correct, the only thing I'm not sure about is the claim that "adding the crossover vertex can't cause any additional edges to become crossed". Couldn't it be the case that the interval (l,r)(l,r) included some other interval (l,r)(l′′,r′′) with llrrll′′r′′r, and now one of (l,i1)(l,i1) and (i+2,r)(i+2,r) crosses it? It seems like the process still has to converge because the intervals get smaller, but that's not completely clear either because of the insertion of crossover vertices. How should I see it?
a3nm

If l<l<r<rl<l<r<r, then you can insert the new indices for the new crossover vertex immediately to the right of ll. This causes the new indices (i±i± a bit) to be in exactly those intervals that used to contain ll. It should be easy to see that adding a crossover vertex can add a new crossing with some other interval only if the new indices fall in the other interval. If l<l<r<rl<l′′<r′′<r then the new indices do not fall into the interval (l,r)(l′′,r′′). If l<l<r<rl<l′′<r′′<r then the new indices might fall into the interval (l,r)(l′′,r′′), but only if ll already fell into that
Mikhail Rudoy

(continued) interval. In this case, you aren't actually creating a new crossing, just turning an old crossing with the old interval (l,r)(l,r) into a new crossing with the interval (i+something,r)(i+something,r)
Mikhail Rudoy

I guess in your second message you meant "with the old interval (l,r)(l,r)" rather than "(l,r)(l,r)"? But OK, I see it: when you add the crossing vertex, the only bad case would be an interval II that overlap with a new interval without overlapping with the corresponding interval. This cannot happen for supersets of (l,r)(l,r) or of (l,r)(l,r): if they overlap with a new interval then they overlapped with the old one. Likewise for subsets of (l,r)(l,r) or (l,r)(l,r) for the reason that you explain. So I agree that this proof looks correct to me. Thanks again!
a3nm

2

@MikhailRudoy was the first to show NP-hardness, but Louis and I had a different idea, which I thought I could outline here since it works somewhat differently. We reduce directly from CNF-SAT, the Boolean satisfiability problem for CNFs. In exchange for this, the regular language LL that we use is more complicated.

The key to show hardness is to design a language LL that allows us to guess a word and repeat it multiple times. Specifically, for any number kk of variables and number mm of clauses, we will build intervals that ensure that all words ww of LL that we can form must start with an arbitrary word u of length k on alphabet {0,1} (intuitively encoding a guess of the valuation of variables), and then this word u is repeated m times (which we will later use to test that each clause is satisfied by the guessed valuation).

To achieve this, we will fix the alphabet A={0,1,#,0,1} and the language: L:=(0|1)(#(00|11))#(0|1). The formal claim is a bit more complicated:

Claim: For any numbers k,mN, we can build in PTIME a set of intervals such that the words in L that can be formed with these intervals are precisely:

{u(#(˜u˜u)#(uu))m#˜uu{0,1}k}

where ˜u denotes the result of reversing the order of u and swapping 0's and 1's, where u denotes the result of adding a prime to all letters in u, and where xy for two words x of y of length p is the word of length 2p formed by taking alternatively one letter from x and one letter from y.

Here's an intuitive explanation of the construction that we use to prove this. We start with intervals that encode the initial guess of u. Here is the gadget for n=4 (left), and a possible solution (right):

choice gadget

It's easy to show the following observation (ignoring L for now): the possible words that we can form with these intervals are exactly u#˜u for u{0,1}k. This is shown essentially like the Lemma in @MikhailRudoy's answer, by induction from the shortest intervals to the longest ones: the center position must contain #, the two neighboring positions must contain one 0 and one 1, etc.

We have seen how to make a guess, now let's see how to duplicate it. For this, we will rely on L, and add more intervals. Here's an illustration for k=3:

duplication gadget

For now take L:=(0|1)(#(00|11))#(0|1). Observe how, past the first #, we must enumerate alternatively an unprimed and a primed letter. So, on the un-dashed triangle of intervals, our observation above still stands: even though it seems like these intervals have more space to the right of the first #, only one position out of two can be used. The same claim holds for the dashed intervals. Now, L further enforces that, when we enumerate an unprimed letter, the primed letter that follows must be the same. So it is easy to see that the possible words are exactly: u#(˜u˜u)#u for u{0,1}k.

Now, to show the claim, we simply repeat this construction m times. Here's an example for k=3 and m=2, using now the real definition of L above the statement of the claim:

duplication gadget, repeated

As before, we could show (by induction on m) that the possible words are exactly the following: u(#˜u˜u#uu)2#˜u for u{0,1}k. So this construction achieves what was promised by the claim.

Thanks to the claim we know that we can encode a guess of a valuation for the variables, and repeat the valuation multiple times. The only missing thing is to explain how to check that the valuation satisfies the formula. We will do this by checking one clause per occurrence of u. To do this, we observe that without loss of generality we can assume that each letter of the word is annotated by some symbol provided as input. (More formally: we could assume that in the problem we also provide as input a word w of length n, and we ask whether the intervals can form a word u such that wu is in L.) The reason why we can assume this is because we can double the size of each interval, and add unit intervals (at the bottom of the picture) at odd positions to carry the annotation of the corresponding even position:

unit annotations

Thanks to this observation, to check clauses, we will define our regular language L to be the intersection of two languages. The first language enforces that the sub-word on even positions is a word in L, i.e., if we ignore the annotations then the word must be in L, so we can just use the construction of the claim and add some annotations. The second language L will check that the clauses are satisfied. To do this, we will add three letters in our alphabet, to be used as annotations: +, , and ϵ. At clause 1im, we add unit intervals to annotate by + the positions in the i-th repetition of u corresponding to variables occurring positively in clause i, and annotate by~ the positions corresponding to negatively occurring variables. We annotate everything else by~ϵ. It is now clear that L can check that the guessed valuation satisfies the formula, by verifying that, between each pair of consecutive # symbols that contain an occurrence of u (i.e., one pair out of two), there is some literal that satisfies the clause, i.e., there must be one occurrence of the subword +1 or of the subword 0.

This concludes the reduction from CNF-SAT and shows NP-hardness of the letter scheduling problem for the language L.

আমাদের সাইট ব্যবহার করে, আপনি স্বীকার করেছেন যে আপনি আমাদের কুকি নীতি এবং গোপনীয়তা নীতিটি পড়েছেন এবং বুঝতে পেরেছেন ।
Licensed under cc by-sa 3.0 with attribution required.