মার্শাল আর্ট স্ট্রাইককে কীভাবে মাপব?


28

উপশিরোনাম: আহ, আমি বাহিনীর সাথে শক্তিশালী, তবে আমি কীভাবে এটি পরিমাপ করব?

যোদার প্যারাফ্রেসিংয়ের জন্য যথাযথ ক্ষমা চেয়ে আমি একটি শক্তি পরিমাপ করার চেষ্টা করছি। ভাগ্যক্রমে, এটি মিডি-ক্লোরিয়ানগুলির চেয়ে পরিমাপ করা সহজ শক্তি ।

আমি যখন কারাতে অন্যকে টিউটর করি, তখন আমি যে বিষয়গুলিকে জোর দিয়ে থাকি তা হ'ল বেসিক স্ট্রাইকগুলির পিছনে কৌশলটির দিকে মনোনিবেশ। অভিজ্ঞতা দেখিয়েছে যে সঠিক কৌশলটি যে কোনও ধর্মঘটের পিছনে অনেক বেশি শক্তি জোগাতে পারে। আমি যে সমস্যার মুখোমুখি হয়েছি তা হ'ল একজন শিক্ষার্থী দাবি করলেও তারা ধর্মঘটের পার্থক্যকে আরও শক্তিশালী বলে "অনুভব" করতে পারে, তারা প্রায়শই তাদের ভুল কৌশলতে ফিরে আসে কারণ তারা নিজেরাই নিশ্চিত করে না যে পার্থক্যটি সত্যই সেখানে আছে।

আমি একটি সিস্টেম ডিজাইন করতে চাই যা ধর্মঘটের পিছনে শক্তি পরিমাপ করে। বিশেষত, আমাকে প্রভাবের পয়েন্টে কিছু সেন্সর সনাক্ত করতে হবে যা ব্যবহার করা যেতে পারে। ন্যাশনাল জিওগ্রাফিক খুব অনুরূপ কিছু করেছে , তবে ক্র্যাশ টেস্টের ডামিগুলির মতো তারা যে সরঞ্জামাদি ব্যবহার করে তা ব্যয়বহুল ব্যয়বহুল। তেমনি, আমার কাছে সেই সরঞ্জাম দ্বারা সরবরাহিত রেজোলিউশন বা যথার্থতার দরকার নেই। কেউ 100 বা 101 এলবি এফ ফোর্স দিয়ে আঘাত করুক না কেন তা অবিরাম। আমি যখন 100 থেকে 200 এ যাচ্ছি তখন আমি তা প্রদর্শন করতে চাই।

বিভিন্ন কারাতে স্ট্রাইক দ্বারা প্রভাবিত বলটি পরিমাপ করার জন্য আমি কোন সেন্সর বা সিস্টেম ব্যবহার করতে পারি? আদর্শভাবে, আমি ডিভাইসটিকে ফোকাস মিট বা অনুরূপে মাউন্ট করতে পারতাম এবং প্যাডটি একটি সামঞ্জস্যযোগ্য সিস্টেমে সংযুক্ত করতে সক্ষম হব যাতে বিভিন্ন স্ট্রাইক পরিমাপ করা যায়।

আমার নীতিগত নকশার সীমাবদ্ধতাগুলি হ'ল:

  • কম খরচ
  • পুনরাবৃত্তিযোগ্য পরিমাপ
  • এর 0-2,000 পাউণ্ড পরিসর

আমি একটি সম্পূর্ণ সিস্টেম ডিজাইন খুঁজছি না, যাতে সমস্ত মনিটরিং ইলেকট্রনিক্স অন্তর্ভুক্ত থাকবে। আমি কেবল সেন্সরটিতে ফোকাস করার চেষ্টা করছি যা ভোল্টেজের মতো কোনও ধরণের পরিমাপযোগ্য আউটপুট সরবরাহ করতে পারে।

এছাড়াও নোট করুন যে আমি ডিভাইসে তারের চালনার পরিকল্পনা করছি, তাই আমার কাছে ইতিমধ্যে সিস্টেমটিকে পাওয়ার করার সহজ উপায় রয়েছে। আমি এক পর্যায়ে ওয়্যারলেস যেতে পারি, তবে আমি তখন একটি ব্যাটারি ব্যবহার করব এবং আমি চাই যে এই প্রশ্নটি সেন্সরে নিজেই নিবদ্ধ থাকবে।


1
সুতরাং আপনি শক্তি বা শক্তি নয়, শক্তি পরিমাপ করতে চান?
এইচডিই 226868

@ এইচডিই 226868 যা আমি হরতাল থেকে সাধারণভাবে পরিমাপ করে দেখেছি তা বলপূর্বক, তাই আমার ছাত্ররাও এটি দেখতে প্রত্যাশা করবে। এটি বলেছে, আপনি যদি এমন কোনও সিস্টেমের কথা ভাবছেন যা সম্পর্কিত মাত্রা পরিমাপ করবে তবে এটি একটি যথাযথ উত্তর। এটি এতক্ষণ কাজ করবে যতক্ষণ না আমি সঠিক স্ট্রাইকিং কৌশলটি ব্যবহার করে শিক্ষার্থীর পরিমাপযোগ্য অগ্রগতিটি প্রদর্শন করতে পারি।

@ ইন্সট্রাক্টেডএ - ভেবেছিলেন আপনি এই প্রশ্নটি দেখতে আগ্রহী হতে পারেন: ইঞ্জিনিয়ারিং.স্ট্যাকেক্সচেঞ্জ / কিউ / ১88৮৮/১। আমি আপনার উত্তরটি স্বাগত জানাই।

আমি মনে করি না যে শক্তি হরতালের একটি ভাল পরিমাপ। শক্তি, বা শক্তি আরও ভাল মেট্রিক হতে পারে। কেবল একটি শক্তি হিসাবে প্রভাব পরিমাপের সমস্যাটি হ'ল আপনি সময়কে অবহেলা করছেন। দুটি অপ্রচলিত দেহের (তুলনামূলকভাবে দুটি মার্বেল) মধ্যে অপেক্ষাকৃত কম শক্তির প্রভাব একটি উচ্চ শিখর শক্তি তৈরি করতে পারে, তবে সেই শক্তির খুব কম সময়কাল হবে। প্রভাব শক্তি দীর্ঘ সময় ধরে বিলুপ্ত হওয়ায় কুশনযুক্ত সংস্থাগুলির মধ্যে উচ্চতর শক্তির প্রভাবের পরিমাণ অনেক কম হতে পারে।
DLS3141

@ ডিএলএস 3141 - এই প্রশ্নটি

উত্তর:


14

আপনি কেবল একটি দুলটি আঘাত করতে পারেন এবং এটি যে কোণে দুলছে তা পরিমাপ করতে পারে। আমি দেখতে পেয়েছি যে তিন লিটার সোডা বোতল পানিতে ভরা এবং দড়ি থেকে ঝুলানো আঘাতের পক্ষে ভাল। বোতলটির ওজন জেনে, একটি সামান্য ট্রিগ শক্তি দেবে, যার থেকে আপনি শক্তি অর্জন করতে পারেন।

সম্পাদনা: যদি মুষ্টি থেকে লক্ষ্য স্থিতির জন্য শক্তি স্থানান্তর অল্প সময়ের জন্য ঘটে তবে বোতলটি এগিয়ে দেওয়ার ত্বরণটি অর্কের নীচে দিয়ে প্রায় সেন্ট্রিপেটাল ত্বরণ হবে। সুইং শীর্ষে সম্ভাব্য শক্তি নীচে গতিবেগ শক্তি সমান।

F=mawith substitutionsF=m(2(mghm))r=2mghr=2mg(1cos(θ))

a=v2/r

a = কেন্দ্রীভূত ত্বরণ

v = তোরণ বরাবর গতি

r = ব্যাসার্ধ (দড়ি দৈর্ঘ্য)

PE=mgh

PE = সম্ভাব্য শক্তি

m = ভর

g = মাধ্যাকর্ষণজনিত কারণে ত্বরণ (প্রায় 9.80665 মি / সেকেন্ড 2 বা 32.1740 ফুট / s 2 )

h = উচ্চতা

KE=0.5mv2or v2=2KE/m

KE = kinetic energy

m = mass

v = speed along the arc

h=rr(cos(θ))

h = height r = rope length θ = the greatest angle of the rope from vertical


+1 for simplicity. I agree with HDE though, you should add the mathematics to make it a more complete answer.
Chris Mueller

1
Not sure converting the swing into a force number is that meaningful. Swings higher pendulum does when harder hit it is (Yoda). If you are talking to kids (or even advanced students) that is all they need to know (don't think an advanced physics class is going to help a karatee student).
Martin York

1
Hopefully the hit is not that hard that the bottle breaks.
Paŭlo Ebermann

10

I think that an impact force sensor is what you're looking for. I'm not sure how expensive the linked sensors are so you could also use an acceleration sensor and do a little math. The second option is likely to be less accurate but I suspect that it will also be significantly less expensive!

I know you said that you didn't want the complete system design but I figured I'd go for the extra credit in the second link. ;)


10

I think what you want is a piezoelectric pressure sensor. You might be able to steal one from an old bathroom scale, but the sensors in a scale may only be good up to ~100 lbs of force. These piezoelectric transducers convert applied pressure to a small voltage across the two leads. This pressure can be converted to force by measuring the surface area of the sensor.

In order to read it out you will need to build an amplification stage, probably consisting of a low noise preamp stage and a more robust amplification stage. The second part is a circuit which holds the maximum value since you are probably most interested in the maximum force applied. You can probably do both the second stage of amplification and any data processing with an Arduino.

You need to be careful how you mount the piezoelectric transducer to the focus mitt. You want to make it something that people can punch without transferring too much of the pressure past the sensor. Once you have it built, you can calibrate it by placing known weights on top of it.


1
A modified electric scale (maybe kitchen rather than bathroom) is exactly what I was thinking of!
AndyT

4
Anything piezzo is fragile against impact type force; the piezzo crystals are - well, crystals.
SF.

@SF Excellent point.
Chris Mueller

2
@SF Then how do you explain the use of peizo sensors in impact testing? I and many others use PE accelerometers, force sensors and the like for shock testing, drop testing and other impact test and have done so for many years. The piezo crystal is a quartz crystal and is more akin to a rock, not glass.
DLS3141

7

I'm going to offer a slightly less helpful answer by poking holes in the answers of others to explain why they aren't ideal, then offering an incomplete, poorly thought through answer of my own.

The majority of answers here suffer from one of three stumbling blocks:

  1. they require unnecessarily large jigs to be feasible with complexities which make them undesirable (pendulum, I'm looking at you here)
  2. they ignore Newton's Laws of reactionary forces in their implication.
  3. the solution is absurdly complex for the task at hand.

Ok, so starting with the pendulum, first of all, very novel solution, in theory a very good one, but there are two issues here: how do you mount the pendulum? Does the instructor hold the end of the string high above their head and hope they don't get hit? Or do you use a swing-like A-frame that you might find at a playground? If so, you may as well just go to a playground, stand on a swing and have them hit you/a pad, it's a free solution. If you want something more technical and you do figure out how to suspend the pendulum, how do you guarantee that they hit it squarely, in the plane in which you measure height, without wasting a bucket of energy spinning the milk carton? If you ever used a tyre swing as a kid you'll know that swinging it in a plane of your choosing, and without spinning, is tricky. The lighter the mass of the carton the more you are going to see instantaneous force only, which could be what you want, I don't fight so I don't know, but I do know that the heaviest blow will be backed up a heap of energy, not a very brief impulse of intense momentum. Standardising between blows will also be a challenge as the amount of contact time with the carton will greatly affect the height it rises to (energy = force x distance).

Anything which you hold in your hands is going to require you to not move; unless you are Superman you are going to move a bit, especially as your students improve, so the force which is registered is going to tail off as you provide less resistance to the blows, which means your students are going to see deminishing returns on improving their technique. Hardly ideal. The only fix to this is to mount this to something rigid and have them hit that. I would suggest a wall or similar if you can.

Conductive foam? How complex is this getting? It's a nice theoretical solution but I can't imagine that being the simplest installation.

So, the solution - any solution must meet three criteria: it's got to be cheap and cheerful, it's got to have repeatable results, and it has to be calibrated somehow.

Building on a variant of @ToyB's solution, a leaf spring is the simplest fix here, mounted on a board to something like a wall. At each end the spring should have a slot cut with a bolt through it to attach the spring to the board whilst allowing the spring to deflect. Attach a strain gauge to the back and connect it up to a simple voltmeter. You could buy all of the necessary components for $10.

Calibrate by placing a range of weights on the spring (just place the spring, on its board, on a table to do this) and measure the voltages. To add a step to the complexity but improve the solution, swap the simple voltmeter for a simple datalogger and record the voltage curve that you get as you hit the spring, then use Excel or similar and a lookup table with your voltage-force relationship to give your students a complete force curve of their hits.

You could even have a few spring options for people/blows of different hits to improve your accuracy. I'd imagine you could achieve all of this for less than $50.


The pendulum idea is not so original - check out the ballistic pendulum, which has been around since it was first published in 1742. Regarding the positioning of the pendulum, if I may use some crude ASCII art: V___V Two ropes form an inverted A-frame on either end, with a log/cylindrical pendulum in the middle. The V shape minimizes lateral motion, support on both ends minimize yawing motion.
Chuck

6

Conductive foam will change it resistance when compressed, so it makes a good, cheap force sensor, as long as you have a system to make many measurements in quick succession and remember the one with the least resistance.

Depending on the force you want to measure, you can use several layers above each other, and because you can cut it into any shape, you're not restricted to the (small) surface of a specific sensor.


1
Will that foam return back to it's original form?

From my experience, yes, but there are several kinds of foam. It's often used to protect ICs, that type is harder, but won't decompress much after you compress it the first time. Other foams are quite soft though, and they decompressed at least several dozen times. Instructables has a project to build a sensor, and they say there's different types of foam as well. Maybe you should contact a manufacturer/vendor to find out which foam meets your needs best.
Guntram Blohm supports Monica

I believe that this is the approach used in electronic drum triggers - devices that record the impact of a drumstick on the membrane to convert them to digital signals - MIDI notes/events. They use a kind of a foam cone that touches the drumskin and measures the impact.
Peteris

5

I agree 100% with Jeff, the advantage of this is that you could build it for cheap, very, very solid. The height it swings to will give you the energy with the formula E=mgh where

E=energy in Joules,

m=mass in kg,

g=9.81m/s^2,

h=height difference in m

This will be the total amount of energy transferred to the target. Unfortunately, this amount of energy is not necessarily representative of how destructive/fight-ending a strike is, as pushing it to that height slowly will require the same energy.

Knock-out power is also represented by the acceleration of the head in the few split-seconds directly after impact, this is what causes a concussion. This could be measured with a circuit that measures the time taken for it to pass two closely spaced points, the first of which should be very close to the initial position of the pendulum. The strike should go through such that the fist/foot goes further than the last of these sensors. If these points are very closely spaced relative to the arc length of the pendulum, you can use a=2s/t2 where

a=acceleration in m/s^2

s=distance between sensors in m

t=time in s

You would have two aims, arguably in order of importance:

1.) make it accelerate as fast as possible 2.) get it as high as possible

If you achieve aim 1 you may cause a concussion/broken rib, assuming you have enough of 2, meaning you would also need to push through the strike! If you achieve aim 2 with a poor aim 1, you will push away your opponent without causing any real damage. I guess I don't really need to expand on this as you are a karate instructor, apologies for going over things you probably already know, it's just best to be precise and complete. Caution, these values will not be "real" in the sense that due to the distribution of the mass through the moving pendulum you will have a more complicated formula to calculate the real values. However, you will get numerical values that you can have higher or lower, and you could "calibrate" it by giving it a kick yourself, setting targets for your students. Also, you could try for example a snapping side kick and a thrusting front kick to show what values you need for the two numbers for different goals, ie (cracked rib/flash knockout) vs (create distance/cause them to fall down)


4

A strain guage attached to a target would be helpful.

Unlike piezzo, they are very durable against impact type force (piezzo crystals tend to shatter when the pressure is applied rapidly).

They can be attached to pretty much arbitrary "board" which yields very little, so unlike pendulum types they will not falsify the results with force applied slower, or sink the energy into the pendulum's own flexibility. If you use a water bottle, as suggested in a different answer, "stirring the water" with the impact will sink a major part of the energy, only part of it going into propelling the bottle itself.

And by changing the material you attach them to, you can tune them in to pretty much any force - they measure the stress in the material and basing on the material's Young's Modulus, they can be adapted to sensing anything from sub-Newton forces, to loads on bridges and freight ship hulls. Strain guages

How to approach using them practically? You pick some kind of plank, bar, or other surface that will serve as the hit target and will bend somewhat upon the impact, but strong enough that it won't snap, attached firmly with both ends. You glue the guage to the "safe" side, somewhere around the point of impact. Then you use some simple microcontroller (PSoC4 comes to mind, easy to program and with all the remaining hardware needed on-board) and measure peak resistance changes. A simple program that picks peak resistance over certain threshold within given time frame and sends it over RS232 to the PC should be simple enough.

How to calibrate it? Place the contraption horizontally, put a known static weight at the point of impact, measure the difference between the resistance unencumbered and with the weight. 1kg weight will exert 9.806 newtons force, and unless you went very fancy with the material, linear approximation of the Young's Modulus is pretty good; your readouts will be linearly proportional to the force, so a simple proportion will suffice to get the measurement in Newtons.


This week I was fortune enough to attend a PSoC4+BLE training session. I have not used PSoC before but looks like it is a great product
Mahendra Gunawardena

@MahendraGunawardena: While PSoC has many interesting advantages, CY8CKIT-049 in particular adds puny price to that.
SF.

4

These are few suggestions to develop the system

I suggest using a polymeric bladder type approach used in Passage Occupancy Detection Systems in automotive industry. This patent describes the automotive application. The bladder system would be part of the focus mitt, which include a MEMS base differential pressure sensor. When impact force will be detected by the pressure sensor, the data will be processed by the simple microprocessor like a Atmel tiny, MSP430 or a PIC. In case analog pressure sensor is chosen then an Analog Front End (AFE) stage is required, but I2C or SPI options are available too.

Another approach will be to use an inertial measurement unit (IMU) which provides two to six degrees of freedom (DOF) couple with a microprocessor like the MSP430 or PIC. These IMU have Gyroscopes and accelerometers. This approach will give more data that can be used for later analysis. Also the communication is done via I2C or SPI to the microprocessor

Pressure Sensors IMU PODS

The system will require simple power system like a simple rechargeable button battery. USB power charging system might be your best choice. The USB charging system will enable the data download option. Also some type of energy harvesting mechanism such as vibration could be used to generate energy required to power the system, similar to some of the new gym machines such as treadmills, elliptical bikes etc. This can be a great low power application.

Another option would be to connect a wearable such as a fit bit that will not only provide the power source but also data storage, review and analysis. Fit bit will also give the ability connect to a Smart phone of real time analysis and feedback to the student.

Going directly from focus mitt to Smart might be a great value added proposition. This can be achieve in many ways. Using Cortex ARM M0 micro with an on-chip BLE might be the best currently available option. Many vendors such as NXP, Freescale, and Cypress offer this option. It is even better is a Cortex ARM M0/M4 + Bluetooth Low Energy/Bluetooth Smart in a module. Below is an example of such device.

BLE Module 1 BLE Module 2 BLE Cortex MO block Diagram

All of these vendors offer small form factor affordable development kit.

Finally to address the VOC the students, providing real-time measurable feedback between correct and incorrect techniques will drive the students desire to attain perfection.

References:


4

Here is a really cheap and cheerful way of showing the size of an impact. Take 2 boards of plywood, put a large compression spring between one and the other board so the spring is sandwiched but removable by at least one of the boards like an "H". Bolt this to a wall."H|" Get set size balls of playdo (kids putty) place on of these inside the spring (probably in a plastic bag or similar to save on mess), refit 2nd board and hit the board hard. The impact on the playdo will cause different deformation depending on how hard it was hit.

If you make the board which is fixed to the wall have sides around it like a box, place 5 (shorter than the sides) compression springs (four corners and the middle holding the putty) you could probably have a piece of string to pull out the second board for ease of getting to the playdo.

Is this too simplistic? it really depends how scientific you want the result and how good you are with a soldering iron as opposed to 6 bits of wood and 5 compression springs


4

The problem with quantifying impact force is the short duration of what is usually a 'peaky' pulse. Bathroom scales are usually damped to give a steady reading of a static force and won't capture transient peaks. Ballistic pendulums also have problems - some of which have been discussed. However, for training young fighters, I'd suggest that you don't really need to quantify the force but, rather, compare their performance over time and let them compare themselves with other students. To do this, all you need do is fill an open box (about 30 cm square) with a thick layer of modelling clay and fix the box to the wall. When the student throws a punch, the clay will act as a witness material and deform plastically. Just measure the maximum depth of the depression and record this on the student's personal record.

The clay is, of course, resusable but you might have to experiment to get the right modelling clay: Roma Plastilina was the preferred material for firearms ballistics but Plasticine or Play-Doh might be less painful to young karate-ka.

আমাদের সাইট ব্যবহার করে, আপনি স্বীকার করেছেন যে আপনি আমাদের কুকি নীতি এবং গোপনীয়তা নীতিটি পড়েছেন এবং বুঝতে পেরেছেন ।
Licensed under cc by-sa 3.0 with attribution required.