আমার একটি ইন্টারেক্টিভ ফিগার সহ একটি প্রোগ্রাম রয়েছে যেখানে মাঝেমধ্যে অনেক শিল্পী আঁকেন। এই চিত্রটিতে, আপনি মাউস ব্যবহার করে জুম এবং প্যানও করতে পারেন। যাইহোক, প্যানিং জুম করার সময় অভিনয়টি খুব ভাল নয় কারণ প্রতিটি শিল্পী সর্বদা পুনরায় চিত্রিত হয়। বর্তমানে প্রদর্শিত শিল্পে কোন শিল্পীরা রয়েছেন এবং কেবল সেগুলি পুনরায় আঁকেন এমন কি কোনও উপায় আছে? (নীচের উদাহরণে পারফোমেস এখনও তুলনামূলকভাবে ভাল তবে আরও বা বেশি জটিল শিল্পী ব্যবহার করে এটি নির্বিচারে আরও খারাপ করা যায়)
hover
পদ্ধতিটির সাথে আমার একইরকম পারফরমেন্স সমস্যা ছিল যে যখনই এটি বলা canvas.draw()
হত শেষে দৌড়ে । কিন্তু আপনি দেখতে পারেন আমি ক্যাশে ব্যবহার করে এবং অক্ষ পটভূমিতে (উপর ভিত্তি করে ফিরিয়ে নেওয়ার মাধ্যমে যে জন্য একটি ঝরঝরে কার্যসংক্রান্ত পাওয়া এই )। এটি পারফরম্যান্সকে উল্লেখযোগ্যভাবে উন্নত করেছে এবং এখন এমনকি অনেক শিল্পীর সাথে এটি খুব মসৃণভাবে চলে। সম্ভবত এটি করার মতো একটি উপায় আছে তবে পদ্ধতি pan
এবং zoom
পদ্ধতির জন্য?
দীর্ঘ কোড নমুনার জন্য দুঃখিত, এটি বেশিরভাগই প্রশ্নের জন্য সরাসরি প্রাসঙ্গিক নয় তবে সমস্যাটি তুলে ধরার জন্য একটি কার্যকারী উদাহরণের জন্য প্রয়োজনীয়।
সম্পাদনা
আমি এমডব্লিউই এমন কিছুতে আপডেট করেছি যা আমার আসল কোডের আরও প্রতিনিধি is
import numpy as np
import numpy as np
import sys
import matplotlib.pyplot as plt
from matplotlib.backends.backend_qt5agg import \
FigureCanvasQTAgg
import matplotlib.patheffects as PathEffects
from matplotlib.text import Annotation
from matplotlib.collections import LineCollection
from PyQt5.QtWidgets import QApplication, QVBoxLayout, QDialog
def check_limits(base_xlim, base_ylim, new_xlim, new_ylim):
if new_xlim[0] < base_xlim[0]:
overlap = base_xlim[0] - new_xlim[0]
new_xlim[0] = base_xlim[0]
if new_xlim[1] + overlap > base_xlim[1]:
new_xlim[1] = base_xlim[1]
else:
new_xlim[1] += overlap
if new_xlim[1] > base_xlim[1]:
overlap = new_xlim[1] - base_xlim[1]
new_xlim[1] = base_xlim[1]
if new_xlim[0] - overlap < base_xlim[0]:
new_xlim[0] = base_xlim[0]
else:
new_xlim[0] -= overlap
if new_ylim[1] < base_ylim[1]:
overlap = base_ylim[1] - new_ylim[1]
new_ylim[1] = base_ylim[1]
if new_ylim[0] + overlap > base_ylim[0]:
new_ylim[0] = base_ylim[0]
else:
new_ylim[0] += overlap
if new_ylim[0] > base_ylim[0]:
overlap = new_ylim[0] - base_ylim[0]
new_ylim[0] = base_ylim[0]
if new_ylim[1] - overlap < base_ylim[1]:
new_ylim[1] = base_ylim[1]
else:
new_ylim[1] -= overlap
return new_xlim, new_ylim
class FigureCanvas(FigureCanvasQTAgg):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.bg_cache = None
def draw(self):
ax = self.figure.axes[0]
hid_annotation = False
if ax.annot.get_visible():
ax.annot.set_visible(False)
hid_annotation = True
hid_highlight = False
if ax.last_artist:
ax.last_artist.set_path_effects([PathEffects.Normal()])
hid_highlight = True
super().draw()
self.bg_cache = self.copy_from_bbox(self.figure.bbox)
if hid_highlight:
ax.last_artist.set_path_effects(
[PathEffects.withStroke(
linewidth=7, foreground="c", alpha=0.4
)]
)
ax.draw_artist(ax.last_artist)
if hid_annotation:
ax.annot.set_visible(True)
ax.draw_artist(ax.annot)
if hid_highlight:
self.update()
def position(t_, coeff, var=0.1):
x_ = np.random.normal(np.polyval(coeff[:, 0], t_), var)
y_ = np.random.normal(np.polyval(coeff[:, 1], t_), var)
return x_, y_
class Data:
def __init__(self, times):
self.length = np.random.randint(1, 20)
self.t = np.sort(
np.random.choice(times, size=self.length, replace=False)
)
self.vel = [np.random.uniform(-2, 2), np.random.uniform(-2, 2)]
self.accel = [np.random.uniform(-0.01, 0.01), np.random.uniform(-0.01,
0.01)]
x0, y0 = np.random.uniform(0, 1000, 2)
self.x, self.y = position(
self.t, np.array([self.accel, self.vel, [x0, y0]])
)
class Test(QDialog):
def __init__(self):
super().__init__()
self.fig, self.ax = plt.subplots()
self.canvas = FigureCanvas(self.fig)
self.artists = []
self.zoom_factor = 1.5
self.x_press = None
self.y_press = None
self.annot = Annotation(
"", xy=(0, 0), xytext=(-20, 20), textcoords="offset points",
bbox=dict(boxstyle="round", fc="w", alpha=0.7), color='black',
arrowprops=dict(arrowstyle="->"), zorder=6, visible=False,
annotation_clip=False, in_layout=False,
)
self.annot.set_clip_on(False)
setattr(self.ax, 'annot', self.annot)
self.ax.add_artist(self.annot)
self.last_artist = None
setattr(self.ax, 'last_artist', self.last_artist)
self.image = np.random.uniform(0, 100, 1000000).reshape((1000, 1000))
self.ax.imshow(self.image, cmap='gray', interpolation='nearest')
self.times = np.linspace(0, 20)
for i in range(1000):
data = Data(self.times)
points = np.array([data.x, data.y]).T.reshape(-1, 1, 2)
segments = np.concatenate([points[:-1], points[1:]], axis=1)
z = np.linspace(0, 1, data.length)
norm = plt.Normalize(z.min(), z.max())
lc = LineCollection(
segments, cmap='autumn', norm=norm, alpha=1,
linewidths=2, picker=8, capstyle='round',
joinstyle='round'
)
setattr(lc, 'data_id', i)
lc.set_array(z)
self.ax.add_artist(lc)
self.artists.append(lc)
self.default_xlim = self.ax.get_xlim()
self.default_ylim = self.ax.get_ylim()
self.canvas.draw()
self.cid_motion = self.fig.canvas.mpl_connect(
'motion_notify_event', self.motion_event
)
self.cid_button = self.fig.canvas.mpl_connect(
'button_press_event', self.pan_press
)
self.cid_zoom = self.fig.canvas.mpl_connect(
'scroll_event', self.zoom
)
layout = QVBoxLayout()
layout.addWidget(self.canvas)
self.setLayout(layout)
def zoom(self, event):
if event.inaxes == self.ax:
scale_factor = np.power(self.zoom_factor, -event.step)
xdata = event.xdata
ydata = event.ydata
cur_xlim = self.ax.get_xlim()
cur_ylim = self.ax.get_ylim()
x_left = xdata - cur_xlim[0]
x_right = cur_xlim[1] - xdata
y_top = ydata - cur_ylim[0]
y_bottom = cur_ylim[1] - ydata
new_xlim = [
xdata - x_left * scale_factor, xdata + x_right * scale_factor
]
new_ylim = [
ydata - y_top * scale_factor, ydata + y_bottom * scale_factor
]
# intercept new plot parameters if they are out of bounds
new_xlim, new_ylim = check_limits(
self.default_xlim, self.default_ylim, new_xlim, new_ylim
)
if cur_xlim != tuple(new_xlim) or cur_ylim != tuple(new_ylim):
self.ax.set_xlim(new_xlim)
self.ax.set_ylim(new_ylim)
self.canvas.draw_idle()
def motion_event(self, event):
if event.button == 1:
self.pan_move(event)
else:
self.hover(event)
def pan_press(self, event):
if event.inaxes == self.ax:
self.x_press = event.xdata
self.y_press = event.ydata
def pan_move(self, event):
if event.inaxes == self.ax:
xdata = event.xdata
ydata = event.ydata
cur_xlim = self.ax.get_xlim()
cur_ylim = self.ax.get_ylim()
dx = xdata - self.x_press
dy = ydata - self.y_press
new_xlim = [cur_xlim[0] - dx, cur_xlim[1] - dx]
new_ylim = [cur_ylim[0] - dy, cur_ylim[1] - dy]
# intercept new plot parameters that are out of bound
new_xlim, new_ylim = check_limits(
self.default_xlim, self.default_ylim, new_xlim, new_ylim
)
if cur_xlim != tuple(new_xlim) or cur_ylim != tuple(new_ylim):
self.ax.set_xlim(new_xlim)
self.ax.set_ylim(new_ylim)
self.canvas.draw_idle()
def update_annot(self, event, artist):
self.ax.annot.xy = (event.xdata, event.ydata)
text = f'Data #{artist.data_id}'
self.ax.annot.set_text(text)
self.ax.annot.set_visible(True)
self.ax.draw_artist(self.ax.annot)
def hover(self, event):
vis = self.ax.annot.get_visible()
if event.inaxes == self.ax:
ind = 0
cont = None
while (
ind in range(len(self.artists))
and not cont
):
artist = self.artists[ind]
cont, _ = artist.contains(event)
if cont and artist is not self.ax.last_artist:
if self.ax.last_artist is not None:
self.canvas.restore_region(self.canvas.bg_cache)
self.ax.last_artist.set_path_effects(
[PathEffects.Normal()]
)
self.ax.last_artist = None
artist.set_path_effects(
[PathEffects.withStroke(
linewidth=7, foreground="c", alpha=0.4
)]
)
self.ax.last_artist = artist
self.ax.draw_artist(self.ax.last_artist)
self.update_annot(event, self.ax.last_artist)
ind += 1
if vis and not cont and self.ax.last_artist:
self.canvas.restore_region(self.canvas.bg_cache)
self.ax.last_artist.set_path_effects([PathEffects.Normal()])
self.ax.last_artist = None
self.ax.annot.set_visible(False)
elif vis:
self.canvas.restore_region(self.canvas.bg_cache)
self.ax.last_artist.set_path_effects([PathEffects.Normal()])
self.ax.last_artist = None
self.ax.annot.set_visible(False)
self.canvas.update()
self.canvas.flush_events()
if __name__ == '__main__':
app = QApplication(sys.argv)
test = Test()
test.show()
sys.exit(app.exec_())
plot
সমস্ত পয়েন্ট সহ কেবলমাত্র একটি একক ব্যবহার করেছেন, সমস্যাটি ঘটবে না।