কোয়ান্টাম গণনার মডেলগুলি কী কী?


37

মনে হয় কোয়ান্টাম কম্পিউটিংটি প্রায়শই গণনার কোয়ান্টাম সার্কিট পদ্ধতি বোঝাতে নেওয়া হয়, যেখানে কোয়েটসের একটি নিবন্ধক কোয়ান্টাম গেটের একটি সার্কিট দ্বারা কাজ করা হয় এবং আউটপুট (এবং সম্ভবত কিছু মধ্যবর্তী পদক্ষেপে) পরিমাপ করা হয়। কোয়ান্টাম অ্যানিয়েলিং কমপক্ষে কোয়ান্টাম রিসোর্স 1 এর সাথে গণনা করার সম্পূর্ণ ভিন্ন পদ্ধতি বলে মনে হয় , কারণ এতে কোয়ান্টাম গেটগুলি জড়িত নয়।

কোয়ান্টাম গণনার বিভিন্ন মডেল কি? কি তাদের আলাদা করে তোলে?

স্পষ্ট করার জন্য, আমি জিজ্ঞাসা করছি না শারীরিক বাস্তবায়নের কোয়েটগুলি কী কী, কোয়ান্টাম সংস্থান ব্যবহার করে ইনপুট 2 থেকে আউটপুটগুলি কীভাবে গণনা করতে হবে তার বিভিন্ন ধারণার বর্ণনা ।


১. এমন কিছু যা অন্তর্নিহিত অ-শাস্ত্রীয়, যেমন জড়িয়ে পড়া এবং একাত্মতার মতো।
২. একটি প্রক্রিয়া যা ইনপুটগুলিকে (যেমন কুইট হিসাবে) আউটপুটগুলিতে রূপান্তর করে (গণনার ফলাফল)।

উত্তর:


19

আদিবাটিক মডেল

কোয়ান্টাম গণনার এই মডেলটি কোয়ান্টাম বহু-দেহ তত্ত্বের ধারণাগুলি দ্বারা অনুপ্রাণিত হয় এবং এটি সার্কিট মডেল (যে এটি একটি ধারাবাহিক-সময়ের মডেল) এবং অবিচ্ছিন্ন-সময় কোয়ান্টাম হাঁটার থেকে পৃথক হয় (এটিতে একটি সময় রয়েছে) নির্ভর বিবর্তন)।

অ্যাডিয়াব্যাটিক গণনা সাধারণত নিম্নলিখিত ফর্ম গ্রহণ করে।

  1. কিছু সেট দিয়ে শুরু করুন, কিছু কিছু সাধারণ অবস্থায় যেমন । প্রাথমিক গ্লোবাল কল করুন ।|+ +|ψ0
  2. এই হ্যামিলটোনিয়ান তে একটি মিথস্ক্রিয়াতে যার জন্য অনন্য স্থল রাষ্ট্র (সর্বনিম্ন রাষ্ট্র)। উদাহরণস্বরূপ, , আমরা । | ψ 0| ψ 0= | + n এইচ 0 = - কে σ ( এক্স ) কেএইচ0|ψ0|ψ0=|+ +এনএইচ0=-Σσ(এক্স)
  3. একটি চূড়ান্ত হ্যামিলটোনিয়ান বেছে নিন , যার একটি অনন্য গ্রাউন্ড স্টেট রয়েছে যা আপনার আগ্রহী এমন সমস্যার উত্তরটি এনকোড করে instance উদাহরণস্বরূপ, আপনি যদি একটি সীমাবদ্ধতা সন্তুষ্টির সমস্যার সমাধান করতে চান তবে আপনি একটি হ্যামিলটোনিয়ান যেখানে সমষ্টি সীমাবদ্ধতার অধিগৃহীত হয় শাস্ত্রীয় সমস্যা, এবং যেখানে প্রতিটি একটি অপারেটর যা কোন মান ভিত্তিতে রাষ্ট্র একটি শক্তি শাস্তি (ক ইতিবাচক শক্তি অবদান) একটি শাস্ত্রীয় নিয়োগ যা বাধ্যতা সন্তুষ্ট নয় প্রতিনিধিত্বমূলক imposes হয় ।এইচ 1 = সি এইচ সি সি এইচ সিএইচ1H1=chcchcc
  4. একটি সময়ের ব্যবধান এবং একটি সময়-পরিবর্তিত হ্যামিলটোনিয়ান যেমন এবং । একটি সাধারণ তবে প্রয়োজনীয় পছন্দটি হ'ল লিনিয়ার ইন্টারপোলেশন ।এইচ ( টি ) এইচ ( 0 ) = এইচ 0 এইচ ( টি ) = এইচ 1 এইচ ( টি ) = টিT0H(t)H(0)=H0H(T)=H1H(t)=tTH1+(1tT)H0
  5. বার জন্য পর্যন্ত , সিস্টেম ক্রমাগত নানারকম হ্যামিল্টনিয়ান অধীনে অভিব্যক্ত করার অনুমতি দেয় , এবং একটি ফলাফল প্রাপ্ত করার আউটপুট এ qubits পরিমাপ ।t = T H ( t ) y { 0 , 1 } nt=0t=TH(t)y{0,1}n

আদিবাটিক মডেলের ভিত্তি হ'ল অ্যাডিয়াব্যাটিক উপপাদ্য , যার কয়েকটি সংস্করণ রয়েছে। আম্বেইনিস এবং রেজেভের সংস্করণ [আরএক্সআইভি  : কোয়ান্ট-পিএইচ / 0411152  ] (আরও কঠোর উদাহরণ) বোঝায় যে যদি স্থলভাগ এবং এর মধ্যবর্তী স্থানে সর্বদা কমপক্ষে এর "শক্তির ফাঁক" থাকে তবে সমস্ত জন্য প্রথম উত্তেজিত রাষ্ট্র এবং এর প্রথম এবং দ্বিতীয় ডেরিভেটিভসের অপারেটর-মানগুলি যথেষ্ট ছোট (যাλ>0H(t)0tTHH(t)খুব দ্রুত বা আকস্মিকভাবে পরিবর্তিত হয় না), তারপরে আপনি ধীরে ধীরে যথেষ্ট পরিমাণে গণনা চালিয়ে নিজের পছন্দ মতো আউটপুট পাওয়ার সম্ভাবনা তৈরি করতে পারেন। তদ্ব্যতীত, আপনি কেবলমাত্র বহু-সম্পর্কিত-সম্পর্কিত ফ্যাক্টর দ্বারা সম্পূর্ণ গণনা কমিয়ে দিয়ে কোনও ধ্রুবক ফ্যাক্টর দ্বারা ত্রুটির সম্ভাবনা হ্রাস করতে পারেন।

ইউনিটরি সার্কিট মডেল থেকে উপস্থাপনায় খুব আলাদা হওয়া সত্ত্বেও, এটি প্রদর্শিত হয়েছে যে এই মডেলটি বহুত্ব-সময় ইউনিটরি সার্কিট মডেলের সমতুল্য [  আরএক্সিব: কোয়ান্ট-পিএইচ / 0405098  ]। অ্যাডিয়াব্যাটিক অ্যালগরিদমের সুবিধা হ'ল এটি কোয়ান্টাম অ্যালগরিদমগুলি নির্মাণের জন্য একটি ভিন্ন পদ্ধতির সরবরাহ করে যা অপ্টিমাইজেশনের সমস্যাগুলিতে আরও আকাঙ্ক্ষিত। এর একটি অসুবিধা হ'ল এটি কীভাবে গোলমাল থেকে রক্ষা করবে, বা কীভাবে তার কার্যক্ষমতাটি অপূর্ণ নিয়ন্ত্রণের অধীনে অবনমিত হবে তা তা পরিষ্কার নয়। আরেকটি সমস্যা হ'ল, এমনকি সিস্টেমের কোনও অপূর্ণতা ছাড়াই, নির্ভরযোগ্য উত্তর পাওয়ার জন্য অ্যালগরিদমটি কীভাবে ধীরে ধীরে চালানো উচিত তা নির্ধারণ করা একটি কঠিন সমস্যা - এটি শক্তির ব্যবস্থার উপর নির্ভর করে, এবং সাধারণভাবে শক্তিটি কী বলা যায় তা বলা সহজ নয় ফাঁক একটি স্থির হ্যামিলটোনিয়ানএইচ ( টি )H, সময়-পরিবর্তিত এক ।H(t)

তবুও, এটি তাত্ত্বিক এবং ব্যবহারিক আগ্রহ উভয়েরই একটি মডেল এবং এটি বিদ্যমান যে কোনওরকমের ইউনিটরি সার্কিট মডেল থেকে সর্বাধিক পৃথক হওয়ার বৈশিষ্ট্য রয়েছে।


15

পরিমাপ-ভিত্তিক কোয়ান্টাম গণনা (এমবিকিউসি)

এটি কোয়ান্টাম গণনা সম্পাদন করার উপায়, মধ্যবর্তী পরিমাপগুলি কেবল উত্তরগুলি উত্তোলনের চেয়ে গণনাটি চালনার উপায় হিসাবে ব্যবহার করে । এটি "মধ্যস্থতাকারী পরিমাপের সাথে কোয়ান্টাম সার্কিট" এর একটি বিশেষ কেস এবং এটি আর শক্তিশালী নয়। যাইহোক, এটি প্রবর্তিত হওয়ার পরে, এটি কোয়ান্টাম গণনাতে একক রূপান্তরকরণের ভূমিকাটির অনেকের অন্তর্নিহিতকে শেষ করে। এই মডেলটিতে নিম্নলিখিতগুলির মতো প্রতিবন্ধকতা রয়েছে:

  1. এক একটি খুব বড় জড়িয়ে পড়া রাষ্ট্র প্রস্তুত করে, বা দেওয়া হয় - যা রাজ্যে প্রাথমিকভাবে প্রস্তুত কিছু কুইবিট সেট রেখে বর্ণনা করা যায় (বা প্রস্তুত করা যায়) এবং তারপরে নিয়ন্ত্রিত- Z ক্রিয়াকলাপের কিছু ক্রম সি জেড = ডি আই জি ( + 1 , + 1 , + 1 , - 1 ) , একটি গ্রাফের প্রান্ত-সম্পর্ক অনুসারে জোড় জোড়ায় সঞ্চালিত হয় (সাধারণত, একটি আয়তক্ষেত্রাকার গ্রিড বা ষড়ভুজ জালিয়াতি)।|+CZ=diag(+1,+1,+1,1)
  2. এই qubits উপর পরিমাপ একটি ক্রম সঞ্চালন - কিছু সম্ভবত মান ভিত্তিতে, কিন্তু সংখ্যাগরিষ্ঠ না মান ভিত্তিতে, কিন্তু যেমন পরিবর্তে পরিমাপ observables জন্য বিভিন্ন কোণ θ । প্রতিটি পরিমাপ উৎপাদ একটি ফলাফল + + 1 বা - 1 (প্রায়ই যথাক্রমে লেবেল '0' বা '1'), এবং কোণের পছন্দ (পূর্ববর্তী পরিমাপের ফলাফলের একটি সহজ উপায় নির্ভর একটি উপায় একটি শাস্ত্রীয় দ্বারা নির্ণিত মধ্যে অনুমোদিত হয় নিয়ন্ত্রণ ব্যবস্থা).MXY(θ)=cos(θ)Xsin(θ)Yθ+11
  3. গণনার উত্তরটি পরিমাপের শাস্ত্রীয় ফলাফলগুলি থেকে গণনা করা যেতে পারে ।±1

ইউনিটরি সার্কিট মডেল হিসাবে, এই মডেল জন্য কেউ বিবেচনা করতে পারে বিভিন্ন প্রকারের আছে। যাইহোক, মূল ধারণাটি একটি বৃহত্ জালিয়াতিযুক্ত রাষ্ট্রের উপর সঞ্চালিত অভিযোজিত একক-কবিট পরিমাপ, বা এমন একটি রাষ্ট্র যা ক্রমবর্ধমান এবং সম্ভবত বিভ্রান্তিকর ক্রিয়াকলাপের শিকার হয়েছে যা সমস্ত একবারে বা পর্যায়ে সম্পাদিত হয়।

গণনার এই মডেলটি সাধারণত একক সার্কিট অনুকরণ করার উপায় হিসাবে প্রাথমিকভাবে দরকারী হিসাবে বিবেচিত হয়। যেহেতু প্রায়শই এটি গণনার আরও ভাল-পছন্দ করা এবং সহজ মডেল অনুকরণ করার মাধ্যম হিসাবে দেখা হয়, তাই এটি বেশিরভাগ মানুষের কাছে তাত্ত্বিকভাবে খুব আকর্ষণীয় বলে বিবেচিত হয় না। যাহোক:

  • আইকিউপি ক্লাসের পিছনে একটি অনুপ্রেরণামূলক ধারণা হিসাবে এটি অন্যান্য বিষয়ের মধ্যে গুরুত্বপূর্ণ , যা কোয়ান্টাম কম্পিউটারের সিমুলেট করা কঠিন, এবং ব্লাইন্ড কোয়ান্টাম কম্পিউটিং, যা কোয়ান্টাম রিসোর্সগুলি ব্যবহার করে সুরক্ষিত গণনার ক্ষেত্রে সমস্যাগুলি সমাধান করার চেষ্টা করার এক উপায় তা প্রমাণ করার এক মাধ্যম is ।

  • পরিমাপ-ভিত্তিক গণনাগুলি মূলত একক কোয়ান্টাম সার্কিটগুলির অনুকরণের মধ্যে সীমাবদ্ধ থাকার কোনও কারণ নেই: এটি আমার কাছে (এবং সংখ্যালঘুতে মুষ্টিমেয় অন্যান্য তাত্ত্বিক) মনে হয় যে এমকিউবিসি আকর্ষণীয় গণনা আদিমতার বর্ণনা দেওয়ার একটি উপায় সরবরাহ করতে পারে। যদিও এমবিকিউসি মধ্যবর্তী পরিমাপের সাথে সার্কিটের কেবল একটি বিশেষ কেস, এবং কেবল একক সার্কিট দ্বারা কেবল বহুবর্ষজীবী ওভারহেড দ্বারা অনুকরণ করা যায়, এটি একথা বলার অপেক্ষা রাখে না যে একক সার্কিটগুলি নীতিগতভাবে যে কিছু করতে পারে তা বর্ণনা করার জন্য খুব কার্যকর ফল হতে পারে way একটি পরিমাপ-ভিত্তিক গণনায় (যেমন শাস্ত্রীয় গণনাতে অপরিহার্য এবং কার্যকরী প্রোগ্রামিং ভাষার উপস্থিতি রয়েছে যা একে অপরের সাথে সামান্য অসুবিধে হয়ে যায়)

প্রশ্নটি রয়ে গেছে যে এমবিকিউসি অ্যালগরিদমগুলি তৈরির বিষয়ে চিন্তাভাবনার কোনও পরামর্শ দেয় যা একক সার্কিটের ক্ষেত্রে সহজেই উপস্থাপিত হয় না - তবে নির্দিষ্ট সংস্থান এবং উপযুক্ততার এক ব্যতীত ইউনিটরি সার্কিটগুলির তুলনায় কোনও গণ্য সুবিধা বা অসুবিধার কোনও প্রশ্নই আসে না। কিছু স্থাপত্য।


1
পৃষ্ঠার কোডের মতো কিছু ত্রুটি সংশোধনকারী কোডগুলির পিছনে অন্তর্নিহিত ধারণা হিসাবে এমবিকিউসি দেখা যেতে পারে। মূলত এই অর্থে যে ভূপৃষ্ঠের কোডটি 3 ডি জালিগুলির সাথে কুইবিটের একটি নির্দিষ্ট সেটের সাথে নির্দিষ্ট হয় যার মধ্যে আপনি পরে পরিমাপ করেন (আসল বাস্তবায়নের সাথে কিউবার স্তর স্তর দ্বারা মূল্যায়ন করে)। তবে সম্ভবত এই অর্থেও যে প্রকৃত পৃষ্ঠ কোড প্রয়োগটি নির্দিষ্ট স্টেবিলাইজারগুলি পরিমাপ করে চালিত হয়।
ক্রেগ গিডনি

1
তবে, পরিমাপের ফলাফলগুলি যেভাবে ব্যবহৃত হয় তা কিউইসিসি এবং এমবিকিউসির মধ্যে যথেষ্ট পার্থক্য করে। অসামঞ্জস্যিত ত্রুটির কোনও বা কম হারের আদর্শিক ক্ষেত্রে, যে কোনও কিউইসিসিসি সর্বদা পরিচয় রূপান্তর গণনা করছে, পরিমাপ সময় সময়কালে হয় এবং ফলাফলগুলি +1 ফলাফলের দিকে ভারী পক্ষপাতদুষ্ট থাকে। এমবিকিউসি প্রোটোকলের স্ট্যান্ডার্ড নির্মাণের জন্য, তবে পরিমাপগুলি প্রতিবার অভিন্ন র্যান্ডম পরিমাপের ফলাফল দেয় এবং এই পরিমাপগুলি ভারীভাবে সময়-নির্ভরশীল এবং অ-তুচ্ছ বিবর্তন চালনা করে।
নিল দে বৌদ্রাপ

1
এটি একটি গুণগত পার্থক্য বা মাত্র একটি পরিমাণগত? পৃষ্ঠের কোডটিতে সেগুলি ড্রাইভিং অপারেশনও রয়েছে (যেমন ব্রাইডিং ত্রুটিগুলি এবং ইনজেকশন টি স্টেটগুলি), এটি কেবল কোডের দূরত্বে তাদের পৃথক করে। আপনি যদি কোডের দূরত্ব 1 এ সেট করেন তবে কোনও ত্রুটি না থাকলে অপারেশনগুলির অনেক বেশি অনুপাত।
ক্রেগ গিডনি

1
আমি বলব যে পার্থক্যটি একটি গুণগত স্তরেও ঘটে থাকে, আমার অভিজ্ঞতা থেকে এমবিকিউসি পদ্ধতিগুলির প্রভাবগুলি বিবেচনা করে। এছাড়াও, এটি আমার কাছে মনে হয় যে ব্রেকিং ত্রুটিগুলি এবং টি-স্টেটের ইনজেকশনের ক্ষেত্রে এটি কোডটি নিজেই সংশোধন করার ক্ষেত্রে ত্রুটি নয়, তবে তাদের বিকৃতকরণ যা গণনা করছে। এগুলি অবশ্যই ত্রুটি সংশোধনকারী মেমরির সাথে প্রাসঙ্গিক জিনিস হতে পারে তবে কোডটি এটি করছে এমনটি একই স্তরের সম্পর্কে বলা হচ্ছে যে এটি কোয়েট যা কোয়ান্টাম কম্পিউটেশন করে, অপারেশনগুলির বিপরীতে যেগুলি এই কুইটগুলিতে সঞ্চালন করে
নিল দে বিউড্রাপ

12

ইউনিটরিটি সার্কিট মডেল

এটি কোয়ান্টাম গণনার সেরা সুপরিচিত মডেল। এই মডেলটিতে নিম্নলিখিতগুলির মতো প্রতিবন্ধকতা রয়েছে:

  1. একটি বিশুদ্ধ অবস্থায় ইনিশিয়ালাইজ qubits একটি সেট, যা আমরা বোঝাতে ;|0
  2. একক পরিবর্তনের একটি ক্রম যা তাদের উপর সঞ্চালিত হয়, যা ক্লাসিকাল বিট-স্ট্রিং উপর নির্ভর করে ;x{0,1}n
  3. এক বা একাধিক পরিমাপ গণনার একেবারে শেষে সঞ্চালিত, একটি ধ্রুপদী আউটপুট স্ট্রিং । (আমাদের কে = এন প্রয়োজন হয় না : উদাহরণস্বরূপ, হ্যাঁ / কোন সমস্যাগুলির জন্য, n এর আকার বিবেচনা না করেই প্রায়শই কে = 1 লাগে )y{0,1}kk=nk=1n

ক্ষুদ্র বিবরণ (উদাহরণস্বরূপ, unitaries সেট এক সঞ্চালন করা সম্ভব পরিবর্তন হতে পারে, তাদের মধ্যে একজনকে যেমন অন্যান্য খাঁটি রাজ্যে প্রস্তুতি পারবেন কিনা , | + + , | - ; পরিমাপ মান ভিত্তিতে হতে হবে বা হতে পারে কিনা অন্য কোনও ভিত্তিতে), তবে এগুলি কোনও প্রয়োজনীয় পার্থক্য করে না।|1|+|


11

বিচ্ছিন্ন-সময় কোয়ান্টাম ওয়াক

একটি "স্বতন্ত্র-সময় কোয়ান্টাম ওয়াক" একটি এলোমেলো হাঁটার কোয়ান্টাম তারতম্য, যেখানে একটি 'ওয়াকার' (বা একাধিক 'ওয়াকার') থাকে যা গ্রাফের ছোট পদক্ষেপ নেয় (যেমন নোডের একটি শৃঙ্খলা বা আয়তক্ষেত্রাকার গ্রিড) )। পার্থক্যটি হ'ল যেখানে এলোমেলো ওয়াকার এলোমেলোভাবে নির্ধারিত দিকের একটি পদক্ষেপ নেয়, কোয়ান্টাম ওয়াকার একটি কোয়ান্টাম "কয়েন" রেজিস্টার দ্বারা নির্ধারিত একটি দিকের পদক্ষেপ নেয়, যা প্রতিটি পদক্ষেপে পরিবর্তিত পরিবর্তে একক রূপান্তর দ্বারা "উল্টানো" হয় একটি এলোমেলো পরিবর্তনীয় পুনরায় নমুনা দ্বারা।  প্রারম্ভিক রেফারেন্সের জন্য [  আরএক্সআইভি: কোয়ান্ট-পিএইচ / 0012090 ] দেখুন।

সরলতার জন্য, আমি আকার এর একটি চক্রের কোয়ান্টাম ওয়াকটি বর্ণনা করব ; যদিও আরও সাধারণ গ্রাফগুলিতে কোয়ান্টামের পদচারণা বিবেচনা করতে অবশ্যই কিছু বিবরণ পরিবর্তন করতে হবে। গণনার এই মডেলটিতে, একজন সাধারণত নিম্নলিখিতটি করে।2n

  1. কিছু রাজ্যে কুইটগুলিতে "অবস্থান" নিবন্ধক প্রস্তুত করুন যেমন | 00 0 , এবং একটি "মুদ্রা" রেজিস্টার করো (আদর্শ ভিত্তি রাজ্যের যা আমরা দ্বারা বোঝাতে সঙ্গে | + + 1 এবং | - 1 ) যা দুই মান ভিত্তিতে রাজ্যের একটি উপরিপাত হতে পারে কিছু প্রাথমিক অবস্থায়।n|000|+1|1
  2. একটি সুসংহত নিয়ন্ত্রিত-একক রূপান্তর সম্পাদন করুন, যা মুদ্রাটি যদি রাজ্যের মধ্যে থাকে তবে অবস্থান নিবন্ধের (মডুলো ) এর মান 1 যোগ করে | + 1 state , এবং মুদ্রাটি রাজ্যে থাকলে অবস্থানের নিবন্ধের মান 1 টি বিয়োগ করে (মডুলো 2 এন ) | - 1 2n|+12n|1
  3. মুদ্রা রেজিস্টারে একটি নির্দিষ্ট ইউনিটরি রূপান্তর সম্পাদন করুন । এটি পরবর্তী পদক্ষেপের দিক নির্ধারণ করতে "মুদ্রা ফ্লিপ" এর ভূমিকা পালন করে। এরপরে আমরা দ্বিতীয় ধাপে ফিরে আসি।C

এই এবং একটি এলোমেলো হাঁটার মধ্যে প্রধান পার্থক্য হ'ল ওয়াকারের বিভিন্ন সম্ভাব্য "ট্র্যাজেক্টরিজ" সুপারপজিশনে সুসংগতভাবে সম্পাদন করা হচ্ছে, যাতে তারা ধ্বংসাত্মকভাবে হস্তক্ষেপ করতে পারে। এটি ওয়াকারের আচরণের দিকে নিয়ে যায় যা ছড়িয়ে পড়ার চেয়ে ব্যালিস্টিক গতির মতো। প্রকৃতপক্ষে, এই জাতীয় মডেলের প্রাথমিক উপস্থাপনা ডায়রাক সমীকরণ অনুকরণ করার উপায় হিসাবে ফেনম্যান তৈরি করেছিলেন।

এই মডেলটি প্রায়শই গ্রাফের মধ্যে চিহ্নিত 'চিহ্নিত' উপাদানগুলির সন্ধান বা সনাক্তকরণের ক্ষেত্রেও বর্ণিত হয়, এক্ষেত্রে কেউ আরেকটি পদক্ষেপ সম্পাদন করে (নোডে নোটারটি চিহ্নিত রয়েছে কিনা তা গণনা করতে, এবং তারপরে সেই গণনার ফলাফল পরিমাপ করতে ) পদক্ষেপ 2 এ ফিরে আসার আগে এই ধরণের অন্যান্য প্রকরণ যুক্তিসঙ্গত।

আরও সাধারণ গ্রাফের উপর কোয়ান্টাম ওয়াক করার জন্য, একজনকে অবশ্যই "অবস্থান" রেজিস্ট্রারের সাথে প্রতিস্থাপন করতে হবে যা গ্রাফের সমস্ত নোডকে প্রকাশ করতে পারে এবং "কয়েন" রেজিস্টারের সাথে প্রান্তের ঘটনাটি একটি শীর্ষবিন্দুতে প্রকাশ করতে পারে। "মুদ্রা অপারেটর" এরপরে অবশ্যই এমন একটি দিয়ে প্রতিস্থাপন করতে হবে যা ওয়াকারকে বিভিন্ন ট্র্যাজিকোলজির আকর্ষণীয় সুপারপজিশন সম্পাদন করতে দেয়। ('আকর্ষণীয়' হিসাবে কী গণনা করা হয় তা আপনার প্রেরণার উপর নির্ভর করে: পদার্থবিজ্ঞানীরা প্রায়শই সেই উপায়গুলি বিবেচনা করেন যা মুদ্রার অপারেটর পরিবর্তন করে সম্ভাবনার ঘনত্বের বিবর্তনকে পরিবর্তন করে, গণনার উদ্দেশ্যে নয়, কোয়ান্টাম ওয়াক ব্যবহার করে বেসিক ফিজিক্সে পরীক্ষার উপায় হিসাবে কণা আন্দোলনের যুক্তিসঙ্গত খেলনা মডেল।  ] পৃথক সময় কোয়ান্টাম হাঁটা।

গণনার এই মডেল কঠোরভাবে ইউনিটারি সার্কিট মডেলের একটি বিশেষ কেস বলছে, তবে খুব নির্দিষ্ট শারীরিক অন্তর্দৃষ্টি দিয়ে অনুপ্রাণিত হয়েছে, যা  সীমিত-ত্রুটিতে বহু-সময় গতিবেগের জন্য কিছু অ্যালগরিদমিক অন্তর্দৃষ্টি (উদাহরণস্বরূপ [  arXiv: 1302.3143 ] দেখুন) তৈরি করেছে কোয়ান্টাম অ্যালগোরিদম। এই মডেলটি গণনার মডেল হিসাবে অবিচ্ছিন্ন সময়ের কোয়ান্টাম ওয়াকের একটি নিকটাত্মীয়ও।


1
আপনি যদি কিউসির প্রসঙ্গে ডিটিকিউডব্লিউ সম্পর্কে কথা বলতে চান তবে আপনার সম্ভবত চাইল্ডস এবং সহযোগীদের কাজের উল্লেখগুলি অন্তর্ভুক্ত করা উচিত (উদাহরণস্বরূপ আরএক্সিভি: 0806.1972 । এছাড়াও, আপনি কীভাবে ডিটিকিউডব্লিউগুলি কাজ করে তা বর্ণনা করছেন, তবে বাস্তবে আপনি তাদের গণনা করতে কীভাবে ব্যবহার করতে পারবেন তা নয় ।
GMS

2
@ জিআইএস: প্রকৃতপক্ষে, আমি এক পর্যায়ে আরও বিশদ যুক্ত করব: যখন আমি প্রথম এটি লিখেছিলাম তা ছিল দ্রুত পর্যালোচনা দেওয়ার পরিবর্তে কয়েকটি মডেলকে দ্রুত গণনা করা এবং সেগুলির বিষয়ে মন্তব্য করা। তবে কীভাবে গণনা করা যায়, শেষ অনুচ্ছেদটি কি উদাহরণটিকে উপস্থাপন করে না?
নিল দে বিউড্রাপ

1
@ জিআইএস: চাইল্ডস এট আল দ্বারা এটি কাজ নয় ? অবিচ্ছিন্ন-সময় কোয়ান্টাম হাঁটা সম্পর্কে, কোনভাবে?
নিল ডি বৌদ্রাপ

10

মধ্যস্থতাকারী পরিমাপ সহ কোয়ান্টাম সার্কিট

এটি "ইউনিটারি সার্কিট" এর ক্ষেত্রে সামান্যতম প্রকরণ, যার মধ্যে একটি অ্যালগোরিদমের মাঝের পাশাপাশি শেষের পরিমাপের অনুমতি দেয় এবং যেখানে ভবিষ্যতের ক্রিয়াকলাপগুলি সেই পরিমাপের ফলাফলের উপর নির্ভর করতে দেয়। এটি কোয়ান্টাম প্রসেসরের একটি বাস্তব চিত্র উপস্থাপন করে যা একটি শাস্ত্রীয় নিয়ন্ত্রণ ডিভাইসের সাথে ইন্টারেক্ট করে, যা অন্যান্য বিষয়ের মধ্যে কোয়ান্টাম প্রসেসর এবং একটি মানব ব্যবহারকারীর মধ্যে ইন্টারফেস।

মধ্যস্থতাকারী পরিমাপ ত্রুটি সংশোধন সম্পাদন করার জন্য কার্যত প্রয়োজন, এবং তাই এটি নীতিগতভাবে একক সার্কিট মডেলের চেয়ে কোয়ান্টাম গণনার আরও বাস্তব চিত্র। তবে নির্দিষ্ট ধরণের তাত্ত্বিকদের পক্ষে পরিমাপকে শেষ অবধি ছেড়ে দেওয়া দৃ strongly়তার সাথে পছন্দ করা (কোনও 'মধ্যস্থতাকারী' পরিমাপ অনুকরণে পিছিয়ে দেওয়া পরিমাপের নীতিটি ব্যবহার করে) অস্বাভাবিক নয়। সুতরাং, কোয়ান্টাম অ্যালগরিদম সম্পর্কে কথা বলার সময় এটি একটি তাত্পর্যপূর্ণ পার্থক্য হতে পারে - তবে এটি কোয়ান্টাম অ্যালগরিদমের কম্পিউটিং শক্তিতে তাত্ত্বিক বৃদ্ধি ঘটায় না।


2
আমার মনে হয় এটি "ইউনিটরিয়াল সার্কিট মডেল" পোস্টের সাথে হওয়া উচিত, এগুলি উভয়ই কেবলমাত্র সার্কিট মডেলের বৈচিত্র এবং সাধারণত তাদের আলাদা আলাদা মডেল হিসাবে আলাদা করা যায় না
glS

1
@ জিআইএস: সিএস তত্ত্ব সম্প্রদায়ের ক্ষেত্রে এটি করা অস্বাভাবিক কিছু নয়। আসলে, পক্ষপাতটি বিশেষত একক সার্কিটের দিকে খুব বেশি।
নিল দে বৌদ্রাপ

6

কোয়ান্টাম অ্যানিলিং

কোয়ান্টাম আনিলিং কোয়ান্টাম গণনার একটি মডেল যা মোটামুটিভাবে বলতে গেলে, গণনার অ্যাডিয়াব্যাটিক মডেলকে সাধারণীকরণ করে। বিষয়টিতে ডি-ওয়েভের কাজের ফলস্বরূপ এটি জনপ্রিয় - এবং বাণিজ্যিক - মনোযোগ আকর্ষণ করেছে।

অবিকল কি কোয়ান্টাম পোড়ানো গঠিত এর মূলত কারণ এটি কম্পিউটার বিজ্ঞানীরা চেয়ে কোয়ান্টাম প্রযুক্তিবিদদের আরো সুদ হয়, যেমন গুনতি অন্যান্য মডেলের পাশাপাশি সংজ্ঞায়িত নয়। বিস্তৃতভাবে বলতে গেলে, আমরা বলতে পারি যে এটি সাধারণত গণিতবিদদের প্রেরণার চেয়ে ইঞ্জিনিয়ারদের প্রেরণাযুক্ত লোকেরা বিবেচনা করে, যাতে এই বিষয়টির অনেকগুলি স্বীকৃতি এবং আঙ্গুলের নিয়ম রয়েছে তবে কয়েকটি 'আনুষ্ঠানিক' ফলাফল বলে মনে হয়। আসলে, একটি উত্তর কোয়ান্টাম পোড়ানো সম্পর্কে আমার প্রশ্ন , Andrew O যতদূর বলতে যায় যে, " কোয়ান্টাম পোড়ানো আলগোরিদিম ও হার্ডওয়্যার বিবেচনার ছাড়া সংজ্ঞায়িত করা যাবে না"। তবুও," কোয়ান্টাম অ্যানিলিং "সুনির্দিষ্টভাবে সংজ্ঞায়িত করা হয়েছে যে নির্দিষ্ট প্রযুক্তিগুলির সাথে কোয়ান্টাম প্রযুক্তিগুলির সমস্যাগুলি কীভাবে সমাধান করা যায় - এবং সুতরাং Andrew Oমূল্যায়ন সত্ত্বেও , আমি মনে করি যে এটির কিছু স্পষ্টভাবে সংজ্ঞায়িত মডেল রয়েছে odies গণনা। আমি এখানে মডেল বর্ণনা করার চেষ্টা করব।

মডেল পিছনে অন্তর্দৃষ্টি

কোয়ান্টাম অ্যানিলিং এর নামটি একটি শিথিল উপমা থেকে (ধ্রুপদী) সিমুলেটেড অ্যানিলিংয়ের নামে পায় । উভয়কেই হ্যামিলটোনীয় আকারে প্রকাশিত একটি সিস্টেমের শক্তি হ্রাস করার উপায় হিসাবে উপস্থাপন করা হয়েছে:

Hclassical=i,jJijsisjHquantum=A(t)i,jJijσizσjzB(t)iσix
With simulated annealing, one essentially performs a random walk on the possible assignments to the 'local' variables si{0,1}, but where the probability of actually making a transition depends on
  • The difference in 'energy' ΔE=E1E0 between two 'configurations' (the initial and the final global assignment to the variables {si}i=1n) before and after each step of the walk;
  • A 'temperature' parameter which governs the probability with which the walk is allowed to perform a step in the random walk which has ΔE>0.

One starts with the system at 'infinite temperature', which is ultimately a fancy way of saying that you allow for all possible transitions, regardless of increases or decreases in energy. You then lower the temperature according to some schedule, so that time goes on, changes in state which increase the energy become less and less likely (though still possible). The limit is zero temperature, in which any transition which decreases energy is allowed, but any transition which increases energy is simply forbidden. For any temperature T>0, there will be a stable distribution (a 'thermal state') of assignments, which is the uniform distribution at 'infinite' temperature, and which is which is more and more weighted on the global minimum energy states as the temperature decreases. If you take long enough to decrease the temperature from infinite to near zero, you should in principle be guaranteed to find a global optimum to the problem of minimising the energy. Thus simulated annealing is an approach to solving optimisation problems.

Quantum annealing is motivated by generalising the work by Farhi et al. on adiabatic quantum computation [arXiv:quant-ph/0001106], with the idea of considering what evolution occurs when one does not necessarily evolve the Hamiltonian in the adiabatic regime. Similarly to classical annealing, one starts in a configuration in which "classical assignments" to some problem are in a uniform distribution, though this time in coherent superposition instead of a probability distribution: this is achieved for time t=0, for instance, by setting

A(t=0)=0,B(t=0)=1
in which case the uniform superposition |ψ0|0000+|0001++|1111 is a minimum-energy state of the quantum Hamiltonian. One steers this 'distribution' (i.e. the state of the quantum system) to one which is heavily weighted on a low-energy configuration by slowly evolving the system — by slowly changing the field strengths A(t) and B(t) to some final value
A(tf)=1,B(tf)=0.
Again, if you do this slowly enough, you will succeed with high probability in obtaining such a global minimum. The adiabatic regime describes conditions which are sufficient for this to occur, by virtue of remaining in (a state which is very close to) the ground state of the Hamiltonian at all intermediate times. However, it is considered possible that one can evolve the system faster than this and still achieve a high probability of success.

Similarly to adiabatic quantum computing, the way that A(t) and B(t) are defined are often presented as a linear interpolations from 0 to 1 (increasing for A(t), and decreasing for B(t)). However, also in common with adiabatic computation, A(t) and B(t) don't necessarily have to be linear or even monotonic. For instance, D-Wave has considered the advantages of pausing the annealing schedule and 'backwards anneals'.

'Proper' quantum annealing (so to speak) presupposes that evolution is probably not being done in the adiabatic regime, and allows for the possibility of diabatic transitions, but only asks for a high chance of achieving an optimum — or even more pragmatically still, of achieving a result which would be difficult to find using classical techniques. There are no formal results about how quickly you can change your Hamiltonian to achieve this: the subject appears mostly to consist of experimenting with a heuristic to see what works in practise.

The comparison with classical simulated annealing

Despite the terminology, it is not immediately clear that there is much which quantum annealing has in common with classical annealing. The main differences between quantum annealing and classical simulated annealing appear to be that:

  • In quantum annealing, the state is in some sense ideally a pure state, rather than a mixed state (corresponding to the probability distribution in classical annealing);

  • In quantum annealing, the evolution is driven by an explicit change in the Hamiltonian rather than an external parameter.

It is possible that a change in presentation could make the analogy between quantum annealing and classical annealing tighter. For instance, one could incorporate the temperature parameter into the spin Hamiltonian for classical annealing, by writing

H~classical=A(t)i,jJijsisjB(t)i,jconst.
where we might choose something like A(t)=t/(tFt) and B(t)=tFt for tF>0 the length of the anneal schedule. (This is chosen deliberately so that A(0)=0 and A(t)+ for ttF.) Then, just as an annealing algorithm is governed in principle by the Schrödinger equation for all times, we may consider an annealing process which is governed by a diffusion process which is in principle uniform with tim by small changes in configurations, where the probability of executing a randomly selected change of configuration is governed by
p(xy)=max{1,exp(γΔExy)}
for some constant γ, where Exy is the energy difference between the initial and final configurations. The stable distribution of this diffusion for the Hamiltonian at t=0 is the uniform distribution, and the stable distribution for the Hamiltonian as ttF is any local minimum; and as t increases, the probability with which a transition occurs which increases the energy becomes smaller, until as ttF the probability of any increases in energy vanish (because any of the possible increase is a costly one).

There are still disanalogies to quantum annealing in this — for instance, we achieve the strong suppression of increases in energy as ttF essentially by making the potential wells infinitely deep (which is not a very physical thing to do) — but this does illustrate something of a commonality between the two models, with the main distinction being not so much the evolution of the Hamiltonian as it is the difference between diffusion and Schrödinger dynamics. This suggests that there may be a sharper way to compare the two models theoretically: by describing the difference between classical and quantum annealing, as being analogous to the difference between random walks and quantum walks. A common idiom in describing quantum annealing is to speak of 'tunnelling' through energy barriers — this is certainly pertinent to how people consider quantum walks: consider for instance the work by Farhi et al. on continuous-time quantum speed-ups for evaluating NAND circuits, and more directly foundational work by Wong on quantum walks on the line tunnelling through potential barriers. Some work has been done by Chancellor [arXiv:1606.06800] on considering quantum annealing in terms of quantum walks, though it appears that there is room for a more formal and complete account.

On a purely operational level, it appears that quantum annealing gives a performance advantage over classical annealing (see for example these slides on the difference in performance between quantum vs. classical annealing, from Troyer's group at ETH, ca. 2014).

Quantum annealing as a phenomenon, as opposed to a computational model

Because quantum annealing is more studied by technologists, they focus on the concept of realising quantum annealing as an effect rather than defining the model in terms of general principles. (A rough analogy would be studying the unitary circuit model only inasmuch as it represents a means of achieving the 'effects' of eigenvalue estimation or amplitude amplification.)

Therefore, whether something counts as "quantum annealing" is described by at least some people as being hardware-dependent, and even input-dependent: for instance, on the layout of the qubits, the noise levels of the machine. It seems that even trying to approach the adiabatic regime will prevent you from achieving quantum annealing, because the idea of what quantum annealing even consists of includes the idea that noise (such as decoherence) will prevent annealing from being realised: as a computational effect, as opposed to a computational model, quantum annealing essentially requires that the annealing schedule is shorter than the decoherence time of the quantum system.

Some people occasionally describe noise as being somehow essential to the process of quantum annealing. For instance, Boixo et al. [arXiv:1304.4595] write

Unlike adiabatic quantum computing[, quantum annealing] is a positive temperature method involving an open quantum system coupled to a thermal bath.

It might perhaps be accurate to describe it as being an inevitable feature of systems in which one will perform annealing (just because noise is inevitable feature of a system in which you will do quantum information processing of any kind): as Andrew O writes "in reality no baths really help quantum annealing". It is possible that a dissipative process can help quantum annealing by helping the system build population on lower-energy states (as suggested by work by Amin et al., [arXiv:cond-mat/0609332]), but this seems essentially to be a classical effect, and would inherently require a quiet low-temperature environment rather than 'the presence of noise'.

The bottom line

It might be said — in particular by those who study it — that quantum annealing is an effect, rather than a model of computation. A "quantum annealer" would then be best understood as "a machine which realises the effect of quantum annealing", rather than a machine which attempts to embody a model of computation which is known as 'quantum annealing'. However, the same might be said of adiabatic quantum computation, which is — in my opinion correctly — described as a model of computation in its own right.

Perhaps it would be fair to describe quantum annealing as an approach to realising a very general heuristic, and that there is an implicit model of computation which could be characterised as the conditions under which we could expect this heuristic to be successful. If we consider quantum annealing this way, it would be a model which includes the adiabatic regime (with zero-noise) as a special case, but it may in principle be more general.

আমাদের সাইট ব্যবহার করে, আপনি স্বীকার করেছেন যে আপনি আমাদের কুকি নীতি এবং গোপনীয়তা নীতিটি পড়েছেন এবং বুঝতে পেরেছেন ।
Licensed under cc by-sa 3.0 with attribution required.