অডিও সিগন্যালে লোগারিদমিক ফুরিয়ার ট্রান্সফর্ম (এলএফটি)


9

আমি যথাসম্ভব যথাযথভাবে বাদ্যযন্ত্রগুলি বিশ্লেষণ করার চেষ্টা করছি। অবশ্যই আমি এফএফটি চেষ্টা করেছিলাম, তবে কিছু সমস্যা পেয়েছি।

আমি খুঁজে পেয়েছি মানুষের শ্রবণণের চেয়ে কম ফ্রিকোয়েন্সিগুলির খুব কম রেজোলিউশন রয়েছে। এই সমস্যাটি সমাধান করার জন্য আমি খুব দীর্ঘ সময় এফএফটি চেষ্টা করেছি, এমনকি 44100Hz নমুনা হারে (সময় রেজোলিউশনের অভাব) এর মধ্যে 8192 নমুনা / গুলি বিশ্লেষণ করেও আমি কম ফ্রিকোয়েন্সি নিয়ে পর্যাপ্ত রেজোলিউশন পাইনি।

আমি খুঁজে পেয়েছি যে কয়েকটি সমাধান রয়েছে।

প্রথমত, এফএফটি বিনগুলিতে একটি চতুর্ভুজ বিরক্তি।
তবে এটি একটি নিখুঁত উপায় বলে মনে হচ্ছে না। এই পদ্ধতির সমস্যাগুলি

হ'ল : ১। 'আমি যদি ফ্রিক বিনের মধ্যে ফ্রিক্স নির্ধারণ করতে চাই, তবে কোন তিনটি বাক্সকে একটি দ্বিখণ্ডিত করার জন্য নির্বাচন করা উচিত?'
২. 'এমনকি আমি এটিও করি, ফলাফলের জন্য কোনও প্রকৃত অতিরিক্ত তথ্য নেই। আমি জানি অন্তরঙ্গগুলি এক ধরণের জটিল পদ্ধতি ''

দ্বিতীয়ত, কাঙ্ক্ষিত ফ্রিকোয়েন্সি সহ প্রতিটি ফ্রিকিক বিনগুলি নিষ্কাশন করা, যাতে আমি লিনারিথেমিকভাবে বিনগুলি বের করতে পারি।
তবে একটি গুরুতর গণ্য ব্যয়ের সমস্যা আছে: (সম্ভবত ওভার) এন ^ 2।

তৃতীয়ত, এলএফটি (লোগারিদমিক ফুরিয়ার ট্রান্সফর্ম)।
এটি লোগারিথ্মিকভাবে-ব্যবধানযুক্ত নমুনাগুলির প্রয়োজন হয় এবং অবিশ্বাস্যভাবে দ্রুত গতির সাথে আমি যা খুঁজছি ঠিক তার ফলাফল দেয়; /programming/1120422/is-there-an-fft-that-uses-a-logarithmic-division-of-frequency

তবে সেই অ্যালগরিদমটি নিয়ে আমার কোনও ধারণা নেই। আমি কাগজটি বুঝতে এবং এটি বাস্তবায়নের চেষ্টা করেছি, তবে আমার ইংরেজি এবং গাণিতিক দক্ষতার অভাবে এটি অসম্ভব ছিল।

সুতরাং, এলএফটি বাস্তবায়নের জন্য আমার সহায়তা দরকার।

উত্তর:


8

সবচেয়ে সহজ এবং সবচেয়ে বাস্তববাদী সমাধান হ'ল পর্যাপ্ত পরিমাণে একটি সাধারণ এফএফটি ব্যবহার করা যা আপনি স্বল্পতম ফ্রিকোয়েন্সিতে প্রয়োজনীয় রেজোলিউশন পান। যেমন আপনি যদি স্বল্পতম ফ্রিকোয়েন্সিতে 1 হার্জ রেজোলিউশন চান তবে আপনার প্রয়োজন হবে 1 সেকেন্ডের এফএফটি উইন্ডো, যেমন এফএফটি আকারের নমুনার হারের সমান হওয়া দরকার, যেমন 44100।

মনে রাখবেন যে আপনি লগারিদমিক এফএফটি বাস্তবায়ন করতে পারলেও এটি তখনও পদার্থবিজ্ঞানের আইন দ্বারা আবদ্ধ হতে পারে (তথ্য তত্ত্ব) এবং আপনার এখনও একই দৈর্ঘ্যের নমুনা উইন্ডোর প্রয়োজন হবে - আপনার যে সমস্ত সুবিধা হবে তা হবে (সামগ্রিক আউটপুট বিনগুলি না রেখে) ) কর্মক্ষমতা ব্যয়।


এটা অদ্ভুত. আমি জানি যে তাত্ত্বিকভাবে কোনও ডেটা নেই। যদি আমি বড় আকারের এফএফটি ব্যবহার করি তবে এটি সত্য যে এটি বাদ্যযন্ত্রের খুব দ্রুত অনসেট বিশ্লেষণ করতে সক্ষম নয়। এবং এটিও সত্য যে আমি কম ফ্রিকোয়েন্সিতে উচ্চতর রেজোলিউশন পেতে সক্ষম নই। তবে মানুষের শ্রবণ ব্যবস্থা কেমন? কীভাবে সেই ব্যবস্থা সময় এবং ফ্রিকোয়েন্সি উভয় ক্ষেত্রেই উচ্চতর রেজোলিউশন পাচ্ছে?

3
সম্ভবত আপনি একটি শ্রেণিবিন্যাসিক দৃষ্টিভঙ্গি বিবেচনা করা উচিত, যেখানে আপনি প্রতিটি ধারাবাহিক অষ্টকটি 2 এর ফ্যাক্টর দ্বারা বাতিল করেন, যাতে আপনি উচ্চ ফ্রিকোয়েন্সিগুলিতে স্বল্প সময়ের উইন্ডোজ এবং কম ফ্রিকোয়েন্সিগুলিতে দীর্ঘ সময়ের উইন্ডো ব্যবহার করতে পারেন? এটি শ্রুতি ফিল্টার ব্যাঙ্কের সাথে কিছুটা উপমাযুক্ত হবে, যেখানে ব্যান্ডউইথ ফ্রিকোয়েন্সি সহ বৃদ্ধি পায়।
পল আর

দুর্দান্ত পন্থা। স্বল্প ফ্রিকোয়েন্সিগুলিতে দীর্ঘ সময়ের গের্তজেল, উচ্চ ফ্রিকোয়েন্সিগুলিতে স্বল্প সময়ের গোয়ারটেল? বোধ হয়। তবে একটি দুর্দান্ত গণনা ব্যয় প্রয়োজন।

এটি আরও জটিল হলেও সেক্ষেত্রে এটি একটি বৃহত এফএফটি করার চেয়ে বেশি দক্ষ। উদাহরণস্বরূপ একটি 4 অষ্টাভ শ্রেণিবিন্যাসের জন্য আপনি 4 এক্স 2048 পয়েন্ট এফএফটি এবং এক্স 2 ডাউন-স্যাম্পলিংয়ের জন্য 3 লো পাস ফিল্টার পেতে চাইতে পারেন। সর্বনিম্ন এফএফটির রেজোলিউশন সম্পূর্ণ নমুনা হারে একক 16384 পয়েন্ট এফএফটি হিসাবে ভাল হবে, তবে যেহেতু এফএফটি হ'ল (এন লগ এন) হয় মোট গণনা ব্যয় অনেক কম হবে।
পল আর

আহা, এফএফটি 2048, ডাউন স্যাম্পল x2, এফএফটি 2048, নমুনা এক্স 2 নিচে .... আমার সময় ও ফ্রিকোয়েন্সি রেজোলিউশন উভয়ের চেয়ে 16384 এফএফটির চেয়ে অনেক কম ব্যয় রয়েছে। গ্রেট। এবং এখনই আমার আর একটি সমাধান রয়েছে: 16384 নমুনায়, প্রতিবার 32 দ্বারা গার্তজেল So সুতরাং, জমে থাকা সাথে, আমি কম ব্যয়ে কম এবং উচ্চ উভয় ফ্রিকোয়েন্সি বের করতে পারি। অনেক ধন্যবাদ. :)

0

আপনি যে বিশ্লেষণটি সম্পাদন করতে চান তা যদি প্রতিটি বিনের সংকেতগুলির ফ্রিকোয়েন্সি প্রয়োজন, আপনি এটি অর্জন করতে স্বল্প সময়ের ফুরিয়ার ট্রান্সফর্ম ব্যবহার করতে পারেন ।

এফএফটির প্রতিটি বিন বাস্তব এবং কাল্পনিক উপাদানকে প্রতিনিধিত্ব করে একটি জটিল সংখ্যা - বা কিছুটা ম্যানিপুলেশন পর্ব এবং মাত্রার পরে।

ফ্রিকোয়েন্সি = ডিপিআই / ডিটি হিসাবে, (পিআইআই == ফেজ), পরপর এসটিএফটি স্পেকট্রার জোড়া থেকে সংশ্লিষ্ট বিনগুলি নিয়ে, আপনি ফ্রিকোয়েন্সি গণনা করতে পারেন।

প্রক্রিয়া সম্পর্কে ডিএসপি মাত্রা একটি ভাল নিবন্ধ আছে।


দেখে মনে হচ্ছে আমি আরও জটিল সমস্যা নিয়ে ভাবছি। আমি এফএফটি ব্যবহার করতে পারি, তবে অডিও সংকেত বিশ্লেষণে, যদিও এটি উপযুক্ত নয়।

3
স্বল্প সময়ের ফুরিয়ার ট্রান্সফর্মের "ধ্রুবক কিউ" সংস্করণটি দেখুন। এসটিএফটির এই ব্যবস্থাটি ফ্রিকোয়েন্সি রেজোলিউশন সরবরাহ করে যা বিভিন্ন ফ্রিকোয়েন্সি রেঞ্জের জন্য প্রয়োজনীয়তাগুলিকে সামঞ্জস্য করতে লোগারিথমেজিকভাবে সামঞ্জস্য করে।
ব্যবহারকারী 2718

আমি একবার দেখবো. আমি ভেবেছিলাম এটি কেবলমাত্র একটি সাধারণ ফিল্টার-ব্যাঙ্ক ট্রান্সফর্ম অপারেশন, যা fft ফলাফলের জন্য প্রয়োগ হয়েছিল।
লাই
আমাদের সাইট ব্যবহার করে, আপনি স্বীকার করেছেন যে আপনি আমাদের কুকি নীতি এবং গোপনীয়তা নীতিটি পড়েছেন এবং বুঝতে পেরেছেন ।
Licensed under cc by-sa 3.0 with attribution required.