প্রথমে কিছু স্বরলিপি। যাক এবং শ্রেণীগত সঙ্গে যুক্ত ক্রম বোঝাতে এবং , অর্থাত্ । যাক । দ্বিপদীকরণগুলি বিবেচনা করুন করুন ign ম্যাথবিএফ
যেখানে K ক্রোনেকারের ডেল্টা। তাহলে আমাদের আছে{ ওয়াই টি } 1 , … , এন এক্স এম ওয়াই এনপ্র { এক্স টি =i{Xt}1,…,m{Yt}1,…,nXmYn এন=এন+এম এক্স ∗ আমিPr{Xt=i}=ai,Pr{Yt=i}=biN=n+m
X∗iY∗i=(X∗1,i,…,X∗N,i)=(δi,X1,…,δi,Xn,0,…,0)=(Y∗1,i,…,Y∗N,i)=(0,…,0,δi,Y1,…,δi,Yn)
δi,j≡1i=jXm,i=∑t=1NX∗t,i=∑t=1mδi,XtYn,i=∑t=1NY∗t,i=∑t=1nδi,Yt
এখন আমরা প্রমাণ শুরু। প্রথমে আমরা পরীক্ষার পরিসংখ্যানের দুটি সমষ্টি একত্রিত করি। নোট করুন যে
সুতরাং আমরা পরীক্ষার পরিসংখ্যান লিখতে পারি
Xm,i−mc^iYn,i−nc^i=(n+m)Xm,i−m(Xm,i+Yn,i)n+m=nXm,i−mYn,in+m=(n+m)Yn,i−n(Xm,i+Yn,i)n+m=mYn,i−nXm,in+m
S=∑i=1k(Xm,i−mc^i)2mc^i+∑i=1k(Yn,i−nc^i)2nc^i=∑i=1k(nXm,i−mYn,i)2(n+m)2mc^i+∑i=1k(nXm,i−mYn,i)2(n+m)2nc^i=∑i=1k(nXm,i−mYn,i)2nm(n+m)c^i
পরবর্তী নোট করুন যে
the এর সাথে নিম্নলিখিত বৈশিষ্ট্যগুলি
nXm,i−mYn,i=∑t=1NnX∗t,i−mY∗t,i=Zi
E[Zi]Var[Zi]Cov[Zi,Zj]=nE[Xm,i]−mE[Yn,i]=nmai−nmai=0=Var[nXm,i−mYn,i]=n2Var[Xm,i]−m2Var[Yn,i]Note Xm,i and Yn,i are independent=n2mai(1−ai)+m2nai(1−ai)=nm(n+m)ai(1−ai)=E[ZiZj]−E[Zi]E[Zj]=E[(nXm,i−mYn,i)(nXm,j−mYn,j)]=n2(−maiaj+m2aiaj)−2n2m2aiaj+m2(−naiaj+n2aiaj)=−nm(n+m)aiaj
এবং তাই মাল্টিভারিয়েট সিএলটি দ্বারা আমাদের যেখানে where , তম উপাদান । যেহেতু S স্লুটস্কির মাধ্যমে আমাদের রয়েছে যেখানে কে হ'ল পরিচয় ম্যাট্রিক্স,
1nm(n+m)−−−−−−−−−√Z=nXm−mYnnm(n+m)−−−−−−−−−√→DN(0,Σ)
(i,j)Σσij=ai(δij−aj)c^=(c^1,…,c^k)→p(a1,…,ak)=anXm−mYnnm(n+m)−−−−−−−−−√c^→DN(0,Ik−a−−√a−−√′)
Ikk×ka−−√=(a1−−√,…,ak−−√) । যেহেতু এর অবিচ্ছিন্ন ম্যাপিংয়ের মাধ্যমে অবিচ্ছিন্ন ম্যাপিংয়ের মাধ্যমে বহুগুণ 1 এর eigenvalue 0 এবং বহুগুণ eigenvalue 1 রয়েছে (বা দেখুন) , ভ্যান ডার ভার্টের উপপাদ্য ) আমাদের
k-1 k ∑ i=1(n X m , i -m Y n , i ) 2Ik−a−−√a−−√′k−1∑i=1k(nXm,i−mYn,i)2nm(n+m)c^i→Dχ2k−1