সন্ধানের সহজ উপায়


9

Consider 3 iid samples drawn from the uniform distribution u(θ,2θ), where θ is parameter. I want to find

E[X(2)|X(1),X(3)]
where X(i) is order statistic i.

I would expect the result to be

E[X(2)|X(1),X(3)]=X(1)+X(3)2
But the only way I can show this result seems to be too lengthy, I cannot come up with simple solution, am I missing something, is there some shortcut?

What I do is the following:

  • I find the conditional density

    f(x(2)|x(1),x(3))=f(x(1),x(2),x(3))f(x(1),x(3))
  • আমি সংহত

E[X(2)|X(1),X(3)]=xf(x|x(1),x(3))dx

বিবরণ:

আমি আদেশের পরিসংখ্যানগুলির ঘনত্বের জন্য সাধারণ সূত্র গ্রহণ করি (সহ) I{A} সেট একটি সূচক A)

fx(1),,x(n)(x1,,xn)=n!i=1nfx(xi)I{x(1)x(2)x(n)}(x1,,xn)

আমার মামলা পেতে

fx(1),x(2),x(3)(x1,x2,x3)=3!1θ3I{x1x2xn}(x1,,x3)

প্রান্তিক fx(1),x(3)(u,v) হয়

fx(1),x(3)(u,v)=fx(1),x(2),x(3)(u,x2,v)dx2

এটাই

fx(1),x(3)(u,v)=3!1θ3I{x1=ux2x3=v}(u,x,v)dx=3!1θ3[vu]

তজ্জন্য

f(x(2)|x(2)=u,x(3)=v)=f(x(1)=u,x(2),x(3)=v)f(x(1)=u,x(3)=v)=3!1θ3Iux2v(u,x2,v)3!1θ3[vu]=[vu]1I{u<x2<v}

যা দেয়

E[X(2)|X(1)=u,X(3)=v]=[vu]1uvxdx=[vu]1[v2u2]2=u+v2

I didn't look at what you did, but you got an answer of uv2, not u+v2
Mark L. Stone

@MarkL.Stone you are right... I fixed that, the last line, integral of xdx was incorrect.
them

উত্তর:


5

Because the Xi all have a uniform distribution, all (unordered) variables are assumed independent, and no other order statistic lies between X(1) and X(3), X(2) has a truncated uniform distribution supported on the interval [X(1),X(3)]. Its mean obviously is (X(1)+X(3))/2, QED.


If you would like a formal demonstration, note that when the Xi are iid with an absolutely continuous distribution F, the conditional density of X(k) (conditional on all the other order statistics) is dF(xk)/(F(x(k+1))F(x(k1))), which is the truncated distribution. (When k=1, F(x0) is taken to be 0; and when k=n, F(xn+1) is taken to be 1.) This follows from Joint pdf of functions of order statistics, for instance, together with the definition of conditional densities.


whuber, when you write dF(xk) you refer to the probability density of X, am I right?
them

1
Yes, that is correct. By definition,
dF(x)=dFdx(x)dx.
(Technically, I should have called this the "probability element" rather than the "density".)
whuber
আমাদের সাইট ব্যবহার করে, আপনি স্বীকার করেছেন যে আপনি আমাদের কুকি নীতি এবং গোপনীয়তা নীতিটি পড়েছেন এবং বুঝতে পেরেছেন ।
Licensed under cc by-sa 3.0 with attribution required.