আপনি ব্যবহার করতে পারেন pandas.cut
:
bins = [0, 1, 5, 10, 25, 50, 100]
df['binned'] = pd.cut(df['percentage'], bins)
print (df)
percentage binned
0 46.50 (25, 50]
1 44.20 (25, 50]
2 100.00 (50, 100]
3 42.12 (25, 50]
bins = [0, 1, 5, 10, 25, 50, 100]
labels = [1,2,3,4,5,6]
df['binned'] = pd.cut(df['percentage'], bins=bins, labels=labels)
print (df)
percentage binned
0 46.50 5
1 44.20 5
2 100.00 6
3 42.12 5
বা numpy.searchsorted
:
bins = [0, 1, 5, 10, 25, 50, 100]
df['binned'] = np.searchsorted(bins, df['percentage'].values)
print (df)
percentage binned
0 46.50 5
1 44.20 5
2 100.00 6
3 42.12 5
... এবং তারপরে value_counts
বা groupby
সামগ্রিক size
:
s = pd.cut(df['percentage'], bins=bins).value_counts()
print (s)
(25, 50] 3
(50, 100] 1
(10, 25] 0
(5, 10] 0
(1, 5] 0
(0, 1] 0
Name: percentage, dtype: int64
s = df.groupby(pd.cut(df['percentage'], bins=bins)).size()
print (s)
percentage
(0, 1] 0
(1, 5] 0
(5, 10] 0
(10, 25] 0
(25, 50] 3
(50, 100] 1
dtype: int64
ডিফল্টভাবে cut
রিটার্ন categorical
।
Series
Series.value_counts()
কিছু বিভাগ ডেটাতে উপস্থিত না থাকলেও শ্রেণিবদ্ধভাবে অপারেশনগুলির মতো পদ্ধতিগুলি সমস্ত বিভাগ ব্যবহার করবে ।
bins = [0, 1, 5, 10, 25, 50, 100]
, আমি কি বলতে পারি যে 5 টি বাক্স তৈরি করুন এবং এটি এটি কেটে ফেলবে গড় কেটে? উদাহরণস্বরূপ, আমার ১১০ টি রেকর্ড রয়েছে, আমি প্রতিটি বিনের ২২ টি রেকর্ড সহ এগুলিকে 5 টি করে বিভক্ত করতে চাই।