বহুমাত্রিক অ্যারেগুলির জন্য আপনি axis
প্রত্যাশিত অক্ষের সাথে পার্টিশনটি প্রয়োগ করতে কীওয়ার্ডটি ব্যবহার করতে পারেন ।
# For a 2D array
indices = np.argpartition(arr, -N, axis=1)[:, -N:]
এবং আইটেমগুলি দখল করার জন্য:
x = arr.shape[0]
arr[np.repeat(np.arange(x), N), indices.ravel()].reshape(x, N)
তবে মনে রাখবেন যে এটি একটি সাজানো ফলাফল ফিরিয়ে দেবে না। np.argsort()
সেক্ষেত্রে আপনি অভিযুক্ত অক্ষ বরাবর ব্যবহার করতে পারেন :
indices = np.argsort(arr, axis=1)[:, -N:]
# Result
x = arr.shape[0]
arr[np.repeat(np.arange(x), N), indices.ravel()].reshape(x, N)
এখানে একটি উদাহরণ:
In [42]: a = np.random.randint(0, 20, (10, 10))
In [44]: a
Out[44]:
array([[ 7, 11, 12, 0, 2, 3, 4, 10, 6, 10],
[16, 16, 4, 3, 18, 5, 10, 4, 14, 9],
[ 2, 9, 15, 12, 18, 3, 13, 11, 5, 10],
[14, 0, 9, 11, 1, 4, 9, 19, 18, 12],
[ 0, 10, 5, 15, 9, 18, 5, 2, 16, 19],
[14, 19, 3, 11, 13, 11, 13, 11, 1, 14],
[ 7, 15, 18, 6, 5, 13, 1, 7, 9, 19],
[11, 17, 11, 16, 14, 3, 16, 1, 12, 19],
[ 2, 4, 14, 8, 6, 9, 14, 9, 1, 5],
[ 1, 10, 15, 0, 1, 9, 18, 2, 2, 12]])
In [45]: np.argpartition(a, np.argmin(a, axis=0))[:, 1:] # 1 is because the first item is the minimum one.
Out[45]:
array([[4, 5, 6, 8, 0, 7, 9, 1, 2],
[2, 7, 5, 9, 6, 8, 1, 0, 4],
[5, 8, 1, 9, 7, 3, 6, 2, 4],
[4, 5, 2, 6, 3, 9, 0, 8, 7],
[7, 2, 6, 4, 1, 3, 8, 5, 9],
[2, 3, 5, 7, 6, 4, 0, 9, 1],
[4, 3, 0, 7, 8, 5, 1, 2, 9],
[5, 2, 0, 8, 4, 6, 3, 1, 9],
[0, 1, 9, 4, 3, 7, 5, 2, 6],
[0, 4, 7, 8, 5, 1, 9, 2, 6]])
In [46]: np.argpartition(a, np.argmin(a, axis=0))[:, -3:]
Out[46]:
array([[9, 1, 2],
[1, 0, 4],
[6, 2, 4],
[0, 8, 7],
[8, 5, 9],
[0, 9, 1],
[1, 2, 9],
[3, 1, 9],
[5, 2, 6],
[9, 2, 6]])
In [89]: a[np.repeat(np.arange(x), 3), ind.ravel()].reshape(x, 3)
Out[89]:
array([[10, 11, 12],
[16, 16, 18],
[13, 15, 18],
[14, 18, 19],
[16, 18, 19],
[14, 14, 19],
[15, 18, 19],
[16, 17, 19],
[ 9, 14, 14],
[12, 15, 18]])