f(x,y,z)=(const.)
গাণিতিকায়,
ContourPlot3D[
Abs[Sin[\[Pi] x] Sin[\[Pi] y] Sin[\[Pi] z]]^2 == 1/2,
{x, -1, 1}, {y, -1, 1}, {z, -1, 1}]

ধ্রুবক সম্ভাবনা 0.2, 0.5 এবং 0.8 এর পৃষ্ঠতল দেখান:
ContourPlot3D[
Abs[Sin[\[Pi] x] Sin[\[Pi] y] Sin[\[Pi] z]]^2,
{x, -1, 1}, {y, -1, 1}, {z, -1, 1}, Contours -> {0.2, 0.5, 0.8},
ContourStyle -> (Directive[#, Opacity[0.25]] & /@ {Yellow, Orange, Red}),
Lighting -> "Neutral", Mesh -> None]

আপনি কাটাআউট এবং স্লাইসিং সহ কিছু ধরণের ভলিউম ভিজ্যুয়ালাইজেশন করতে পারেন । আপনি 3 ডি প্রতিটি পয়েন্টে একটি রঙ এবং একটি অস্বচ্ছতা বরাদ্দ করতে সক্ষম হবেন। আরও উন্নত সরঞ্জাম আপনাকে স্থানান্তর ফাংশনটি চয়ন করতে দেয়।
imgdata =
Table[Abs[Sin[\[Pi] x] Sin[\[Pi] y] Sin[\[Pi] z]]^2,
{x, -1., 1, .01}, {y, -1., 1, .01}, {z, -1., 1, .01}];
img = Image3D[imgdata, ClipRange -> {{150, 200}, {0, 100}, {0, 200}}]

স্লাইসিং প্রায়শই সহায়তা করে, বিশেষত যদি আপনি কোন স্লাইসটি প্রদর্শন করতে চান তা ইন্টারেক্টিভভাবে নিয়ন্ত্রণ করতে পারেন।
Image3DSlices[img, Range[1, 200, 10]]
