আমি আর আনোভা দিয়ে পারফর্ম করেছি এবং আমি উল্লেখযোগ্য পার্থক্য পেয়েছি। তবে টুকির পদ্ধতিটি ব্যবহার করে কোন জোড়াটি উল্লেখযোগ্যভাবে আলাদা ছিল তা পরীক্ষা করার সময় আমি সেগুলির কোনও পাই নি। এটি কীভাবে সম্ভব?
কোডটি এখানে:
fit5_snow<- lm(Response ~ Stimulus, data=audio_snow)
anova(fit5_snow)
> anova(fit5_snow)
Analysis of Variance Table
Response: Response
Df Sum Sq Mean Sq F value Pr(>F)
Stimulus 5 73.79 14.7578 2.6308 0.02929 *
Residuals 84 471.20 5.6095
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
df<-df.residual(fit5_snow)
MSerror<-deviance(fit5_snow)/df
comparison <- HSD.test(audio_snow$Response, audio_snow$Stimulus, df, MSerror, group=FALSE)
> comparison <- HSD.test(audio_snow$Response, audio_snow$Stimulus, df, MSerror, group=FALSE)
Study:
HSD Test for audio_snow$Response
Mean Square Error: 5.609524
audio_snow$Stimulus, means
audio_snow.Response std.err replication
snow_dry_leaves 4.933333 0.6208034 15
snow_gravel 6.866667 0.5679258 15
snow_metal 6.333333 0.5662463 15
snow_sand 6.733333 0.5114561 15
snow_snow 7.333333 0.5989409 15
snow_wood 5.066667 0.7713110 15
alpha: 0.05 ; Df Error: 84
Critical Value of Studentized Range: 4.124617
Comparison between treatments means
Difference pvalue sig LCL UCL
snow_gravel - snow_dry_leaves 1.9333333 0.232848 -0.5889913 4.455658
snow_metal - snow_dry_leaves 1.4000000 0.588616 -1.1223246 3.922325
snow_sand - snow_dry_leaves 1.8000000 0.307012 -0.7223246 4.322325
snow_snow - snow_dry_leaves 2.4000000 0.071587 . -0.1223246 4.922325
snow_wood - snow_dry_leaves 0.1333333 0.999987 -2.3889913 2.655658
snow_gravel - snow_metal 0.5333333 0.989528 -1.9889913 3.055658
snow_gravel - snow_sand 0.1333333 0.999987 -2.3889913 2.655658
snow_snow - snow_gravel 0.4666667 0.994348 -2.0556579 2.988991
snow_gravel - snow_wood 1.8000000 0.307012 -0.7223246 4.322325
snow_sand - snow_metal 0.4000000 0.997266 -2.1223246 2.922325
snow_snow - snow_metal 1.0000000 0.855987 -1.5223246 3.522325
snow_metal - snow_wood 1.2666667 0.687424 -1.2556579 3.788991
snow_snow - snow_sand 0.6000000 0.982179 -1.9223246 3.122325
snow_sand - snow_wood 1.6666667 0.393171 -0.8556579 4.188991
snow_snow - snow_wood 2.2666667 0.103505 -0.2556579 4.788991