যোগ করা এবং বিয়োগ করা
সুতরাং আমাদের তা দেখাতে হবে∑ n i = 1
∑i=1n(yi−y¯)2==∑i=1n(yi−y^i+y^i−y¯)2∑i=1n(yi−y^i)2+2∑i=1n(yi−y^i)(y^i−y¯)+∑i=1n(y^i−y¯)2
∑ni=1(yi−y^i)(y^i−y¯)=0. Write
∑i=1n(yi−y^i)(y^i−y¯)=∑i=1n(yi−y^i)y^i−y¯∑i=1n(yi−y^i)
So, (a) the residuals
ei=yi−y^i need to be orthogonal to the fitted values,
∑ni=1(yi−y^i)y^i=0, and (b) the sum of the fitted values needs to be equal to the sum of the dependent variable,
∑ni=1yi=∑ni=1y^i.
e′Xβ^====(y−Xβ^)′Xβ^(y−X(X′X)−1X′y)′Xβ^y′(X−X(X′X)−1X′X)β^y′(X−X)β^=0
As for (b), the derivative of the OLS criterion function with respect to the constant (so you need one in the regression for this to be true!), aka the normal equation,
is
∂SSR∂α^=−2∑i(yi−α^−β^xi)=0,
which can be rearranged to
∑iyi=nα^+β^∑ixi
The right hand side of this equation evidently also is
∑ni=1y^i, as
y^i=α^+β^xi.