সমস্যাটি হ'ল দ্বি-দ্বি বিতরণের সীমাবদ্ধ কেস হিসাবে পোয়েসনের আপনার বৈশিষ্ট্যটি যেমন বলা হয়েছে তেমন সঠিক নয় ।
পইসন দ্বিপদ যখন একটি সীমিত ক্ষেত্রে দেখা যায়: দ্বিতীয় অংশটি গুরুত্বপূর্ণ। যদি পি
M→∞andMp→λ.
p remains fixed, the first condition implies that the rate will also increase without bound.
λ[t,t+dt)p of an event (e.g. "success") is fixed for any given trial.
MpXM→∞NpE[X]=Mp>N for M>N/p. Put another way, no matter how unlikely the probability of success, eventually you can achieve an average number of successes as large as you please if you perform sufficiently many trials. So, M→∞ (or, just saying "M is large") is not enough to justify a Poisson model for X.
It is not difficult to algebraically establish
Pr[X=x]=e−λλxx!,x=0,1,2,…
as a limiting case of
Pr[X=x]=(Mx)px(1−p)M−x,x=0,1,2,…,M
by setting
p=λ/M and letting
M→∞. Other answers here have addressed the intuition behind this relationship and provided computational guidance as well. But it is important that
p=λ/M. You can't ignore this.