প্রথমে এইচএমএম এবং আরএনএন-এর মধ্যে পার্থক্যগুলি দেখুন।
এই কাগজটি থেকে : লুকানো মার্কভ মডেলগুলির একটি টিউটোরিয়াল এবং বক্তৃতা স্বীকৃতিতে নির্বাচিত অ্যাপ্লিকেশনগুলি আমরা শিখতে পারি যে এইচএমএম নিম্নলিখিত তিনটি মৌলিক সমস্যার দ্বারা চিহ্নিত করা উচিত:
সমস্যা 1 (সম্ভাবনা): একটি এইচএমএম λ = (এ, বি) এবং একটি পর্যবেক্ষণের ক্রম দেওয়া হয়েছে, সম্ভাবনা নির্ধারণ করুন P (O |।)।
সমস্যা 2 (ডিকোডিং): একটি পর্যবেক্ষণের ক্রম ও এবং একটি এইচএমএম Give = (এ, বি) দেওয়া, সেরা লুকানো রাষ্ট্রের অনুক্রমটি আবিষ্কার করুন প্রশ্ন
3 (শিক্ষণ): একটি পর্যবেক্ষণের ক্রম ও এইচএমএম-র রাজ্যগুলির সেট দেওয়া হয়েছে, এইচএমএম পরামিতি এ এবং বি শিখুন
আমরা এই তিনটি দৃষ্টিকোণ থেকে আরএনএন এর সাথে এইচএমএম তুলনা করতে পারি।
সম্ভাবনা
আরএনএন- তে এইচএমএম (চিত্র এ 5) ভাষার মডেল হওয়ার সম্ভাবনা
এইচএমএম-তে আমরা দ্বারা সম্ভাবনা গণনা করি যেখানে সমস্ত সম্ভাব্য প্রতিনিধিত্ব করে এবং সম্ভাবনাটি আসল গ্রাফ সম্ভাবনা। আরএনএন থাকা অবস্থায়, যতদূর আমি জানি, ভাষা মডেলিংয়ে বিভ্রান্তির বিপরীতমুখী যেখানে এবং আমরা লুকানো রাজ্যের উপরে যোগফল পাই না এবং পাই না সঠিক সম্ভাবনা। পি( হে ) = Σপ্রশ্নঃপি( ও , কিউ ) = ∑প্রশ্নঃপি( ও | প্রশ্ন ) পি( প্রশ্ন )প্রশ্নঃ1পি ( এক্স)= ∏টিt = 11পি ( এক্সটি| এক্স( টি - 1 ), । । । , এক্স( 1 ))---------------√টি
গঠনের কথা মাথায় রেখে
ডিকোডিংয়ের কাজটি নির্ধারণ করছে এবং কোন ভেরিয়েবলের ক্রম নির্ধারণ করে তা কিছু ক্রমের অন্তর্নিহিত উত্স ভিটারবি অ্যালগরিদম ব্যবহার করে পর্যবেক্ষণ এবং ফলাফলের দৈর্ঘ্য সাধারণত পর্যবেক্ষণের সমান; আরএনএন-এ থাকাকালীন ডিকোডিংটি এবং এর দৈর্ঘ্য সাধারণত পর্যবেক্ষণ সমান হয় না ।বনামটি( j ) = m a xএনi = 1বনামটি - 1( i ) কআমি জেখ(ণটি)পি( y)1, । । । , yহে| এক্স1, । । । , এক্সটি) = ∏হেo = 1পি( y)ণ| Y1, । ।। , yo - 1, গণ)ওয়াইএক্স
এইচএমএম-তে ডিকোডিং (চিত্র A.10)
আরএনএন-তে ডিকোডিং
শিক্ষা
এইচএনএম-এ পড়াশোনা আরএনএন-এর চেয়ে অনেক জটিল। এইচএমএম-এ এটি সাধারণত বাউম-ওয়েলচ অ্যালগরিদম (প্রত্যাশা-ম্যাক্সিমাইজেশন অ্যালগরিদমের একটি বিশেষ ক্ষেত্রে) ব্যবহার করে যখন আরএনএন-এ এটি সাধারণত গ্রেডিয়েন্ট বংশোদ্ভূত হয়।
আপনার অনুচ্ছেদের জন্য:
কোন অনুক্রমিক ইনপুট সমস্যাগুলির জন্য প্রতিটি উপযুক্ত?
যখন আপনার পর্যাপ্ত ডেটা নেই এইচএমএম ব্যবহার করুন এবং যখন আপনার সঠিক সম্ভাবনা গণনা করতে হবে তখন এইচএমএম আরও ভাল মামলা (ডেটা কীভাবে উত্পন্ন হয় সেই মডেলিংয়ের কাজগুলি )ও হতে পারে। অন্যথায়, আপনি আরএনএন ব্যবহার করতে পারেন।
ইনপুট মাত্রিকতা নির্ধারণ করে যে কোনটি আরও ভাল ম্যাচ?
আমি এটি মনে করি না, তবে লুকানো রাজ্যগুলি যদি খুব বড় হয় তবে এটি শিখতে আরও বেশি সময় লাগতে পারে যেহেতু মূলত অ্যালগরিদমের জটিলতা (ফরোয়ার্ড পশ্চাৎ এবং ভিটারবি) মূলত বিচ্ছিন্ন রাজ্যের সংখ্যার বর্গক্ষেত্র হয়।
একটি এলএসটিএম আরএনএন-এর জন্য "দীর্ঘ মেমরির" প্রয়োজন এমন সমস্যাগুলি কি আরও উপযুক্ত, যখন এইচএমএম দ্বারা চক্রীয় ইনপুট নিদর্শনগুলির (শেয়ার বাজার, আবহাওয়া) আরও সহজে সমাধান করা যায়?
এইচএমএম-এ বর্তমান অবস্থা পূর্ববর্তী রাজ্যগুলি এবং পর্যবেক্ষণগুলির দ্বারাও প্রভাবিত হয় (পিতৃস্থানীয় রাষ্ট্রগুলি দ্বারা) এবং আপনি "দীর্ঘ স্মৃতি" এর জন্য সেকেন্ড-অর্ডার লুকানো মার্কভ মডেল চেষ্টা করতে পারেন।
আমি মনে করি আপনি প্রায় করতে আরএনএন ব্যবহার করতে পারেন
রেফারেন্স
- ডিপ লার্নিং CS224N / Ling284 সহ প্রাকৃতিক ভাষা প্রক্রিয়াজাতকরণ
- লুকানো মার্কভ মডেল