আপনি ব্যবহার ঠিক তবে, RI মনে করি তবে আপনাকে ব্যবহার করতে পারে bbmle
'র mle2
উপর নন-নেগেটিভ nnls কোফিসিয়েন্টস লিস্ট স্কোয়ার সম্ভাবনা ফাংশন নিখুত এবং 95% আস্থা অন্তর নিরূপণ করা ফাংশন। তদুপরি, আপনি অ্যাকাউন্টে নিতে পারেন যে আপনার সহগগুলি আপনার সহগের লগকে অনুকূলিত করে নেতিবাচক হতে পারে না, যাতে ব্যাক ট্রান্সফর্মস স্কেলে তারা কখনই নেতিবাচক হতে পারে না।
এই পদ্ধতির চিত্র তুলে ধরার জন্য এখানে একটি সংখ্যাসূচক উদাহরণ রয়েছে, এখানে গাউসিয়ান শব্দ নিয়ে গাউস-আকারের ক্রোমাটোগ্রাফিক শিখরগুলির একটি সুপারপজিশনকে ডিকনভোলিউটিংয়ের প্রসঙ্গে: (কোনও মন্তব্য স্বাগত)
প্রথমে কিছু তথ্য অনুকরণ করা যাক:
require(Matrix)
n = 200
x = 1:n
npeaks = 20
set.seed(123)
u = sample(x, npeaks, replace=FALSE) # peak locations which later need to be estimated
peakhrange = c(10,1E3) # peak height range
h = 10^runif(npeaks, min=log10(min(peakhrange)), max=log10(max(peakhrange))) # simulated peak heights, to be estimated
a = rep(0, n) # locations of spikes of simulated spike train, need to be estimated
a[u] = h
gauspeak = function(x, u, w, h=1) h*exp(((x-u)^2)/(-2*(w^2))) # shape of single peak, assumed to be known
bM = do.call(cbind, lapply(1:n, function (u) gauspeak(x, u=u, w=5, h=1) )) # banded matrix with theoretical peak shape function used
y_nonoise = as.vector(bM %*% a) # noiseless simulated signal = linear convolution of spike train with peak shape function
y = y_nonoise + rnorm(n, mean=0, sd=100) # simulated signal with gaussian noise on it
y = pmax(y,0)
par(mfrow=c(1,1))
plot(y, type="l", ylab="Signal", xlab="x", main="Simulated spike train (red) to be estimated given known blur kernel & with Gaussian noise")
lines(a, type="h", col="red")
আসুন এখন y
পরিচিত গাউসিয়ান আকৃতির ব্লার কার্নেলের bM
(এটি আমাদের কোভারিয়েট / ডিজাইনের ম্যাট্রিক্স) অনুলিপিযুক্ত একটি ব্যান্ডযুক্ত ম্যাট্রিক্সযুক্ত পরিমাপের গোলমাল সংকেতটিকে ডিসকনভলিউট করি ।
প্রথমে আসুন, সংক্রামিতকে নননিজেটিভ ন্যূনতম স্কোয়ারগুলির সাথে ডিসকনভলিউট করি:
library(nnls)
library(microbenchmark)
microbenchmark(a_nnls <- nnls(A=bM,b=y)$x) # 5.5 ms
plot(x, y, type="l", main="Ground truth (red), nnls estimate (blue)", ylab="Signal (black) & peaks (red & blue)", xlab="Time", ylim=c(-max(y),max(y)))
lines(x,-y)
lines(a, type="h", col="red", lwd=2)
lines(-a_nnls, type="h", col="blue", lwd=2)
yhat = as.vector(bM %*% a_nnls) # predicted values
residuals = (y-yhat)
nonzero = (a_nnls!=0) # nonzero coefficients
n = nrow(bM)
p = sum(nonzero)+1 # nr of estimated parameters = nr of nonzero coefficients+estimated variance
variance = sum(residuals^2)/(n-p) # estimated variance = 8114.505
এখন আসুন আমাদের গাউসিয়ান ক্ষতির উদ্দেশ্য নেতিবাচক লগ-সম্ভাবনাটিকে অনুকূল করে তুলুন এবং আপনার সহগের লগকে অনুকূলিত করুন যাতে ব্যাক ট্রান্সফর্মস স্কেলে তারা কখনই নেতিবাচক হতে পারে না:
library(bbmle)
XM=as.matrix(bM)[,nonzero,drop=FALSE] # design matrix, keeping only covariates with nonnegative nnls coefs
colnames(XM)=paste0("v",as.character(1:n))[nonzero]
yv=as.vector(y) # response
# negative log likelihood function for gaussian loss
NEGLL_gaus_logbetas <- function(logbetas, X=XM, y=yv, sd=sqrt(variance)) {
-sum(stats::dnorm(x = y, mean = X %*% exp(logbetas), sd = sd, log = TRUE))
}
parnames(NEGLL_gaus_logbetas) <- colnames(XM)
system.time(fit <- mle2(
minuslogl = NEGLL_gaus_logbetas,
start = setNames(log(a_nnls[nonzero]+1E-10), colnames(XM)), # we initialise with nnls estimates
vecpar = TRUE,
optimizer = "nlminb"
)) # takes 0.86s
AIC(fit) # 2394.857
summary(fit) # now gives log(coefficients) (note that p values are 2 sided)
# Coefficients:
# Estimate Std. Error z value Pr(z)
# v10 4.57339 2.28665 2.0000 0.0454962 *
# v11 5.30521 1.10127 4.8173 1.455e-06 ***
# v27 3.36162 1.37185 2.4504 0.0142689 *
# v38 3.08328 23.98324 0.1286 0.8977059
# v39 3.88101 12.01675 0.3230 0.7467206
# v48 5.63771 3.33932 1.6883 0.0913571 .
# v49 4.07475 16.21209 0.2513 0.8015511
# v58 3.77749 19.78448 0.1909 0.8485789
# v59 6.28745 1.53541 4.0950 4.222e-05 ***
# v70 1.23613 222.34992 0.0056 0.9955643
# v71 2.67320 54.28789 0.0492 0.9607271
# v80 5.54908 1.12656 4.9257 8.407e-07 ***
# v86 5.96813 9.31872 0.6404 0.5218830
# v87 4.27829 84.86010 0.0504 0.9597911
# v88 4.83853 21.42043 0.2259 0.8212918
# v107 6.11318 0.64794 9.4348 < 2.2e-16 ***
# v108 4.13673 4.85345 0.8523 0.3940316
# v117 3.27223 1.86578 1.7538 0.0794627 .
# v129 4.48811 2.82435 1.5891 0.1120434
# v130 4.79551 2.04481 2.3452 0.0190165 *
# v145 3.97314 0.60547 6.5620 5.308e-11 ***
# v157 5.49003 0.13670 40.1608 < 2.2e-16 ***
# v172 5.88622 1.65908 3.5479 0.0003884 ***
# v173 6.49017 1.08156 6.0008 1.964e-09 ***
# v181 6.79913 1.81802 3.7399 0.0001841 ***
# v182 5.43450 7.66955 0.7086 0.4785848
# v188 1.51878 233.81977 0.0065 0.9948174
# v189 5.06634 5.20058 0.9742 0.3299632
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# -2 log L: 2338.857
exp(confint(fit, method="quad")) # backtransformed confidence intervals calculated via quadratic approximation (=Wald confidence intervals)
# 2.5 % 97.5 %
# v10 1.095964e+00 8.562480e+03
# v11 2.326040e+01 1.743531e+03
# v27 1.959787e+00 4.242829e+02
# v38 8.403942e-20 5.670507e+21
# v39 2.863032e-09 8.206810e+11
# v48 4.036402e-01 1.953696e+05
# v49 9.330044e-13 3.710221e+15
# v58 6.309090e-16 3.027742e+18
# v59 2.652533e+01 1.090313e+04
# v70 1.871739e-189 6.330566e+189
# v71 8.933534e-46 2.349031e+47
# v80 2.824905e+01 2.338118e+03
# v86 4.568985e-06 3.342200e+10
# v87 4.216892e-71 1.233336e+74
# v88 7.383119e-17 2.159994e+20
# v107 1.268806e+02 1.608602e+03
# v108 4.626990e-03 8.468795e+05
# v117 6.806996e-01 1.021572e+03
# v129 3.508065e-01 2.255556e+04
# v130 2.198449e+00 6.655952e+03
# v145 1.622306e+01 1.741383e+02
# v157 1.853224e+02 3.167003e+02
# v172 1.393601e+01 9.301732e+03
# v173 7.907170e+01 5.486191e+03
# v181 2.542890e+01 3.164652e+04
# v182 6.789470e-05 7.735850e+08
# v188 4.284006e-199 4.867958e+199
# v189 5.936664e-03 4.236704e+06
library(broom)
signlevels = tidy(fit)$p.value/2 # 1-sided p values for peak to be sign higher than 1
adjsignlevels = p.adjust(signlevels, method="fdr") # FDR corrected p values
a_nnlsbbmle = exp(coef(fit)) # exp to backtransform
max(a_nnls[nonzero]-a_nnlsbbmle) # -9.981704e-11, coefficients as expected almost the same
plot(x, y, type="l", main="Ground truth (red), nnls bbmle logcoeff estimate (blue & green, green=FDR p value<0.05)", ylab="Signal (black) & peaks (red & blue)", xlab="Time", ylim=c(-max(y),max(y)))
lines(x,-y)
lines(a, type="h", col="red", lwd=2)
lines(x[nonzero], -a_nnlsbbmle, type="h", col="blue", lwd=2)
lines(x[nonzero][(adjsignlevels<0.05)&(a_nnlsbbmle>1)], -a_nnlsbbmle[(adjsignlevels<0.05)&(a_nnlsbbmle>1)],
type="h", col="green", lwd=2)
sum((signlevels<0.05)&(a_nnlsbbmle>1)) # 14 peaks significantly higher than 1 before FDR correction
sum((adjsignlevels<0.05)&(a_nnlsbbmle>1)) # 11 peaks significant after FDR correction
আমি ননপ্যারমেট্রিক বা প্যারামেট্রিক বুটস্ট্র্যাপিংয়ের সাথে তুলনামূলক এই পদ্ধতির পারফরম্যান্স তুলনা করার চেষ্টা করি নি, তবে এটি অবশ্যই আরও দ্রুত।
আমি এও ভাবতে আগ্রহী ছিলাম যে অব্যাহত nnls
ফিশার ইনফরমেশন ম্যাট্রিক্সের উপর ভিত্তি করে অবিকৃত সহকারীগুলির জন্য ওয়াল্ডের আত্মবিশ্বাসের ব্যবস্থাগুলি গণনা করতে সক্ষম হব , ননগ্রেটিভিটি সীমাবদ্ধতাগুলি প্রয়োগ করার জন্য একটি লগ রুপান্তরিত সহগ স্কেলে গণনা করা হয়েছিল এবং nnls
অনুমানগুলিতে মূল্যায়ন করা হয়েছিল ।
আমি মনে করি এটি এরকম হয়, এবং আসলে আমি mle2
উপরে যা ব্যবহার করেছি তার সাথে আনুষ্ঠানিকভাবে এক হওয়া উচিত :
XM=as.matrix(bM)[,nonzero,drop=FALSE] # design matrix
posbetas = a_nnls[nonzero] # nonzero nnls coefficients
dispersion=sum(residuals^2)/(n-p) # estimated dispersion (variance in case of gaussian noise) (1 if noise were poisson or binomial)
information_matrix = t(XM) %*% XM # observed Fisher information matrix for nonzero coefs, ie negative of the 2nd derivative (Hessian) of the log likelihood at param estimates
scaled_information_matrix = (t(XM) %*% XM)*(1/dispersion) # information matrix scaled by 1/dispersion
# let's now calculate this scaled information matrix on a log transformed Y scale (cf. stat.psu.edu/~sesa/stat504/Lecture/lec2part2.pdf, slide 20 eqn 8 & Table 1) to take into account the nonnegativity constraints on the parameters
scaled_information_matrix_logscale = scaled_information_matrix/((1/posbetas)^2) # scaled information_matrix on transformed log scale=scaled information matrix/(PHI'(betas)^2) if PHI(beta)=log(beta)
vcov_logscale = solve(scaled_information_matrix_logscale) # scaled variance-covariance matrix of coefs on log scale ie of log(posbetas) # PS maybe figure out how to do this in better way using chol2inv & QR decomposition - in R unscaled covariance matrix is calculated as chol2inv(qr(XW_glm)$qr)
SEs_logscale = sqrt(diag(vcov_logscale)) # SEs of coefs on log scale ie of log(posbetas)
posbetas_LOWER95CL = exp(log(posbetas) - 1.96*SEs_logscale)
posbetas_UPPER95CL = exp(log(posbetas) + 1.96*SEs_logscale)
data.frame("2.5 %"=posbetas_LOWER95CL,"97.5 %"=posbetas_UPPER95CL,check.names=F)
# 2.5 % 97.5 %
# 1 1.095874e+00 8.563185e+03
# 2 2.325947e+01 1.743600e+03
# 3 1.959691e+00 4.243037e+02
# 4 8.397159e-20 5.675087e+21
# 5 2.861885e-09 8.210098e+11
# 6 4.036017e-01 1.953882e+05
# 7 9.325838e-13 3.711894e+15
# 8 6.306894e-16 3.028796e+18
# 9 2.652467e+01 1.090340e+04
# 10 1.870702e-189 6.334074e+189
# 11 8.932335e-46 2.349347e+47
# 12 2.824872e+01 2.338145e+03
# 13 4.568282e-06 3.342714e+10
# 14 4.210592e-71 1.235182e+74
# 15 7.380152e-17 2.160863e+20
# 16 1.268778e+02 1.608639e+03
# 17 4.626207e-03 8.470228e+05
# 18 6.806543e-01 1.021640e+03
# 19 3.507709e-01 2.255786e+04
# 20 2.198287e+00 6.656441e+03
# 21 1.622270e+01 1.741421e+02
# 22 1.853214e+02 3.167018e+02
# 23 1.393520e+01 9.302273e+03
# 24 7.906871e+01 5.486398e+03
# 25 2.542730e+01 3.164851e+04
# 26 6.787667e-05 7.737904e+08
# 27 4.249153e-199 4.907886e+199
# 28 5.935583e-03 4.237476e+06
z_logscale = log(posbetas)/SEs_logscale # z values for log(coefs) being greater than 0, ie coefs being > 1 (since log(1) = 0)
pvals = pnorm(z_logscale, lower.tail=FALSE) # one-sided p values for log(coefs) being greater than 0, ie coefs being > 1 (since log(1) = 0)
pvals.adj = p.adjust(pvals, method="fdr") # FDR corrected p values
plot(x, y, type="l", main="Ground truth (red), nnls estimates (blue & green, green=FDR Wald p value<0.05)", ylab="Signal (black) & peaks (red & blue)", xlab="Time", ylim=c(-max(y),max(y)))
lines(x,-y)
lines(a, type="h", col="red", lwd=2)
lines(-a_nnls, type="h", col="blue", lwd=2)
lines(x[nonzero][pvals.adj<0.05], -a_nnls[nonzero][pvals.adj<0.05],
type="h", col="green", lwd=2)
sum((pvals<0.05)&(posbetas>1)) # 14 peaks significantly higher than 1 before FDR correction
sum((pvals.adj<0.05)&(posbetas>1)) # 11 peaks significantly higher than 1 after FDR correction
এই গণনার ফলাফলগুলি এবং এর দ্বারা প্রাপ্ত ফলাফলগুলি mle2
প্রায় অভিন্ন (তবে আরও দ্রুত), তাই আমি মনে করি এটি সঠিক এবং আমি এটির সাথে মিলিয়ে যাব যা আমরা স্পষ্টতই করছিলাম mle2
...
nnls
নিয়মিত রৈখিক মডেল ফিট বিটিডব্লু ব্যবহার করে কোনও কোয়েটারিয়টকে ইতিবাচক সহগের সাথে পুনঃসংশোধন কাজ করে না, যেহেতু এই জাতীয় রৈখিক মডেল ফিট অযোগ্যতা বাধা বিবেচনা করে না এবং ফলস্বরূপ সংবেদনহীন আত্মবিশ্বাসের বিরতিগুলি নেতিবাচক হতে পারে। জেসন লি ও জোনাথন টেইলরের এই প্রবন্ধটি "প্রান্তিক স্ক্রিনিংয়ের জন্য সঠিক পোস্ট মডেল নির্বাচন অনুকরণ", নননিজেটিভ এনএনএল (বা ল্যাসো) সহগের উপর মডেল-পরবর্তী নির্বাচন অনুকরণ করার জন্য একটি পদ্ধতিও উপস্থাপন করে এবং এর জন্য কাটা কাটা গাউসীয় বিতরণ ব্যবহার করে। এনএনএলস ফিট করার জন্য এই পদ্ধতির কোনও প্রকাশ্যে উপলভ্য বাস্তবায়ন আমি দেখিনি - যদিও লাসো ফিট করে সেখানে বেছে বেছে বেছে নিনপ্যাকেজ যে কিছু করে। যদি কারও কাছে কোনও বাস্তবায়ন ঘটে থাকে তবে দয়া করে আমাকে জানান!
উপরের পদ্ধতিতে একজন প্রশিক্ষণ ও বৈধতা সেট (যেমন বিজোড় এবং এমনকি পর্যবেক্ষণ) -এও ডেটা বিভক্ত করতে পারে এবং প্রশিক্ষণের সেট থেকে ইতিবাচক সহগ সহ কোভেরিয়েটগুলি অনুমান করতে পারে এবং তারপরে যাচাইকরণ সেট থেকে আত্মবিশ্বাসের ব্যবধান এবং পি মানগুলি গণনা করতে পারে। এটি ওভারফিটিংয়ের বিরুদ্ধে কিছুটা প্রতিরোধী হবে যদিও এটি ক্ষমতার ক্ষতিও করতে পারে কারণ কেউ কেবলমাত্র অর্ধেক ডেটা ব্যবহার করবে। আমি এখানে এটি করিনি কারণ নিজের মধ্যে অদক্ষতা বাধা ইতিমধ্যে ওভারফিটিংয়ের বিরুদ্ধে রক্ষা করতে বেশ কার্যকর।