একটি গ্রুপে বৃহত্তম অবদানকারী নির্ধারণ করা


9

আমি পরিসংখ্যান সম্পর্কে খুব বেশি জানি না তাই আমাকে সহ্য করুন। ধরা যাক আমার কাছে এক হাজার কর্মী রয়েছে। আমি সবচেয়ে কঠোর কর্মী কে তা নির্ধারণ করতে চাই তবে আমি কেবল এক ঘন্টার কাজের সময় 1-100 এর দলে কাজ করার পরিমাণটি পরিমাপ করতে পারি। প্রতিটি শ্রমিক সর্বদা একই পরিমাণে কাজ করে চলেছে তা ধরে নিচ্ছি, প্রচুর পরিমাণে ট্রায়াল এবং সংমিশ্রণে আমি আমার কর্মীদের কে সবচেয়ে কঠোর পরিশ্রম করে র‌্যাঙ্ক করতে পারি?

দ্রষ্টব্য: এটি কেবল একটি রূপক, সুতরাং পরীক্ষাগুলি চালানোর বিষয়ে চিন্তা করবেন না, কেবল ধরে নিন যে আমার কাছে ইতিমধ্যে একটি বিশাল সেট ডেটা রয়েছে।

সম্পাদনা: যখন আমি বলি "প্রতিটি কর্মী ধরে রেখে সবসময় একই পরিমাণের কাজ করে" আমার অর্থ প্রতিটি ব্যক্তি প্রতিদিনের সমান পরিমাণে কাজ করে। তাই জো প্রতিদিন প্রায় 100 ইউনিট কাজ করবে এবং গ্রেগ 50 টি প্রায় কাজ করবে The সমস্যাটি হ'ল আমি কেবলমাত্র গ্রুপটির দ্বারা কাজকর্মের ইউনিটগুলি পর্যবেক্ষণ করতে পারি।

আরও সম্পাদনা: একযোগে কর্মরত শ্রমিকের সংখ্যা এবং তাদের কাজ করার ফ্রিকোয়েন্সি সম্পর্কিত। একই সাথে কাজ করা সংখ্যক শ্রমিক থাকতে পারে। কিছু শ্রমিক সম্ভবত অন্যের চেয়ে অনেক বেশি কাজ শেষ করবে, এর অর্থ, আমরা ধরে নিতে পারি যে কিছু শ্রমিক প্রায় 90% সময় কাজ করবে এবং অন্যরা প্রায় কখনও নয়।

আমি জানি যে এটি কঠিন করে তোলে তবে আমার কাছে খুব বড় একটি ডেটাসেট থাকবে আশা করি এটি কিছুটা সহজ করে দিয়েছে।

প্রতি ঘন্টা জন্য আমরা জানি যে কোন শ্রমিক কাজ করছে এবং কতটা কাজ করেছে। সেই তথ্য থেকে আমি সন্ধান করতে চাই যে সর্বাধিক কাজটি করছে।

যদি ডেটা JSON ফর্ম্যাটে থাকে তবে এটি দেখতে এরকম কিছু লাগবে:

[
  {
    "work_done": 12345,
    "Workers": [ "andy", "bob", "cameron", "david" ]
  },
  {
    "work_done": 432,
    "Workers": [ "steve", "joe", "andy"]
  },
  {
    "work_done": 59042,
    "Workers": [ "bob", "aaron", "michelle", "scott", "henry" ]
  },
  ...
]

3
কাজের সংযোজন যেমন কিছু পণ্যের পরিমাণ? তারপরে আপনি প্রতিটি শ্রমিকের অবদান অনুমান করতে লিনিয়ার রিগ্রেশন এবং তাদের সহগের দ্বারা কর্মীদের বাছাই করতে ব্যবহার করতে পারেন। যদি এটি যুক্ত হয় না তবে আপনি আরও জটিল কিছু পেতে চাইতে পারেন want
ডগলাস জারে

যদি আপনি ধরে নেন যে প্রতিটি গ্রুপ কতটা কাজ করেছে এবং এটিও ধরে নিয়েছে যে কাজটি প্রতিটি গ্রুপের অংশগ্রহণকারীদের মধ্যে সমানভাবে বিতরণ করা হয়েছে, আপনি কেবলমাত্র গ্রুপের দ্বারা সম্পাদিত লোকের সংখ্যা এবং যোগফলের মাধ্যমে ভাগ করতে পারবেন প্রতিটি কর্মী বিভিন্ন গোষ্ঠীতে করেছেন এমন বিটস আপ করুন। যদিও পরিসংখ্যান সহ এটিতে আসলে কিছুই নেই।
Qnan 21

1
@ ডগলাসজারে হ্যাঁ, কাজটি সংযোজনযোগ্য
গ্রেগ গুইদা

1
আমার মনে হয় বর্ণনাটি পরিষ্কার। আপনি কেবল দলবদ্ধভাবে কর্মীদের পর্যবেক্ষণ করেন এবং স্বতন্ত্র শ্রমিকদের সম্পর্কে অনুমান করতে চান। উদাহরণস্বরূপ, বলুন যে আপনার মোট 5 জন কর্মী আছেন, একদিন আপনি এক সাথে কর্মরত observe 1,2,3 observe পর্যবেক্ষণ করেন, দ্বিতীয় দিন আপনি শ্রমিকদের দেখেন {1,4,5}, দিন তিনটি {2,3,4 }, ইত্যাদি এবং আপনার ডেটা হ'ল প্রতিটি দিনে মোট আউটপুট। তারপরে, আপনি প্রতিটি পৃথক কর্মীর গড় আউটপুট অনুমান করতে পারেন? উত্তর হ্যাঁ - যদি আপনি শ্রমিকদের যোগফলের বন্টন করতে পারেন তবে আপনি সম্ভাব্যতাটি লিখতে এবং স্বতন্ত্র উপায়ে একটি কার্য হিসাবে সর্বোচ্চ করতে পারেন।
ম্যাক্রো

1
আমি কী মিস করছি? আমি এখনও দেখতে পাচ্ছি না আপনি ব্যক্তিগত অর্থ এমনকি কোথায় পেয়েছেন। আমরা কি সবসময় জানি যে কোন কর্মীরা ডেটা স্পেশালিক্যাল আওয়ারে থাকে? প্রতি ঘন্টা মোট কাজের পরিমাণটি কোনওভাবে নির্ধারিত হয়? এমন একটি অনুমান আছে যা সমস্যার সংজ্ঞাটিতে পরিষ্কার আছে যে আমি অনুপস্থিত?
মাইকেল আর চেরনিক

উত্তর:


10

ডেভিড হ্যারিস একটি দুর্দান্ত উত্তর দিয়েছেন , তবে যেহেতু প্রশ্নটি সম্পাদিত হতে চলেছে, সম্ভবত এটি তার সমাধানের বিশদটি দেখতে সহায়তা করবে। নিম্নলিখিত বিশ্লেষণের হাইলাইটগুলি হ'ল:

  • ওজনযুক্ত সর্বনিম্ন স্কোয়ারগুলি সম্ভবত সাধারণ ন্যূনতম স্কোয়ারের চেয়ে বেশি উপযুক্ত।

  • কারণ অনুমানগুলি যে কোনও ব্যক্তির নিয়ন্ত্রণের বাইরে উত্পাদনশীলতার বৈচিত্রকে প্রতিফলিত করতে পারে, স্বতন্ত্র কর্মীদের মূল্যায়ন করতে সেগুলি ব্যবহার সম্পর্কে সতর্ক থাকুন।


এটি কার্যকর করার জন্য আসুন নির্দিষ্ট সূত্রগুলি ব্যবহার করে কিছু বাস্তববাদী ডেটা তৈরি করা যাক আমরা সমাধানটির যথার্থতাটি মূল্যায়ন করতে পারি। এটি দিয়ে করা হয় R:

set.seed(17)
n.names <- 1000
groupSize <- 3.5
n.cases <- 5 * n.names  # Should exceed n.names
cv <- 0.10              # Must be 0 or greater
groupSize <- 3.5        # Must be greater than 0
proficiency <- round(rgamma(n.names, 20, scale=5)); hist(proficiency)

এই প্রাথমিক পদক্ষেপে, আমরা:

  • এলোমেলো সংখ্যা জেনারেটরের জন্য একটি বীজ সেট করুন যাতে যে কেউ ফলাফলের পুনরুত্পাদন করতে পারে।

  • নির্দিষ্ট করুন কতগুলি শ্রমিক সেখানে সঙ্গে আছে n.names

  • দ্বারা প্রতি গ্রুপে প্রত্যাশিত সংখ্যক শ্রমিককে নির্ধারণ করুন groupSize

  • কতগুলি কেস (পর্যবেক্ষণ) সহ উপলব্ধ তা সুনির্দিষ্ট করুন n.cases। (পরে এগুলির কয়েকটি মুছে ফেলা হবে কারণ এগুলি এলোমেলোভাবে ঘটে থাকে, আমাদের সিন্থেটিক কর্মীবাহিনীর কোনও শ্রমিকের সাথেই নয় correspond)

  • প্রতিটি গ্রুপের কাজের যোগফলের ভিত্তিতে ভবিষ্যদ্বাণী করা হবে তার থেকে কাজের পরিমাণের পরিমাণ এলোমেলোভাবে সাজানোর ব্যবস্থা করুন "দক্ষতা"। এর মান cvএকটি সাধারণ আনুপাতিক প্রকরণ; যেমন ,0.10 এখানে প্রদত্ত একটি সাধারণ 10% প্রকরণের সাথে মিল রয়েছে (যা কয়েকটি ক্ষেত্রে 30% এরও বেশি হতে পারে)।

  • বিভিন্ন কাজের দক্ষতা সহ লোকের একটি কর্মশক্তি তৈরি করুন। কম্পিউটিংয়ের জন্য এখানে প্রদত্ত প্যারামিটারগুলি proficiencyসেরা এবং সবচেয়ে খারাপ কর্মীদের মধ্যে 4: 1 এরও বেশি পরিসীমা তৈরি করে (যা আমার অভিজ্ঞতাতে প্রযুক্তি এবং পেশাগত কাজের ক্ষেত্রে কিছুটা সংকীর্ণও হতে পারে, তবে এটি রুটিন উত্পাদন কাজের ক্ষেত্রেও প্রশস্ত)।

এই সিনথেটিক কর্মী হাতে নিয়ে, আসুন তাদের কাজ অনুকরণ করুন । এটি scheduleপ্রতিটি পর্যবেক্ষণের জন্য প্রতিটি শ্রমিকের দল তৈরি করে ( ) কোনও পর্যবেক্ষক নির্ধারণ করে যার মধ্যে কোনও শ্রমিক জড়িত ছিল না), প্রতিটি গ্রুপের কর্মীদের দক্ষতার সংক্ষিপ্তসার এবং এ পরিমাণটি একটি এলোমেলো মান দ্বারা গুন করা (যথাযথ গড়)1) অনিবার্যভাবে সংঘটিত হওয়া বৈচিত্রগুলি প্রতিফলিত করতে। (যদি কোনও ভিন্নতা না থাকে তবে আমরা এই প্রশ্নটি গণিত সাইটের দিকে উল্লেখ করতাম, যেখানে উত্তরদাতারা এই সমস্যাটি কেবল একইসাথে রৈখিক সমীকরণের একটি সেট হিসাবে চিহ্নিত করতে পারেন যা দক্ষতার জন্য ঠিক সমাধান করা যেতে পারে।)

schedule <- matrix(rbinom(n.cases * n.names, 1, groupSize/n.names), nrow=n.cases)
schedule <- schedule[apply(schedule, 1, sum) > 0, ]
work <- round(schedule %*% proficiency * exp(rnorm(dim(schedule)[1], -cv^2/2, cv)))
hist(work)

বিশ্লেষণের জন্য সমস্ত ওয়ার্কগ্রুপ ডেটা একক ডেটা ফ্রেমে রেখে দেওয়া কিন্তু কাজের মানগুলি পৃথক রাখতে সুবিধাজনক পেয়েছি:

data <- data.frame(schedule)

এটিই আমরা আসল উপাত্ত দিয়ে শুরু করব: আমাদের কর্মীরা গ্রুপিংটি data(বা schedule) দ্বারা এনকোড করে এবং workঅ্যারেতে পর্যবেক্ষণ করা কাজের আউটপুটগুলি দেখতে পাবে ।

দুর্ভাগ্যক্রমে, যদি কিছু শ্রমিক সর্বদা জুটিবদ্ধ হয় তবে Rএর lmপদ্ধতিটি একটি ত্রুটি সহ কেবল ব্যর্থ হয়। এই জাতীয় জুড়ি জন্য আমাদের প্রথমে পরীক্ষা করা উচিত। একটি উপায় হ'ল শিডিউলে নিখুঁতভাবে সম্পর্কযুক্ত কর্মীদের সন্ধান করা:

correlations <- cor(data)
outer(names(data), names(data), paste)[which(upper.tri(correlations) & 
                                             correlations >= 0.999999)]

আউটপুটটি সর্বদা জোড় করা জোড় জোড়ের তালিকা তৈরি করবে: এটি এই শ্রমিকদের দলে সংযুক্ত করতে ব্যবহার করা যেতে পারে, কারণ কমপক্ষে আমরা প্রতিটি দলের উত্পাদনশীলতা অনুমান করতে পারি , যদি এর মধ্যে থাকা ব্যক্তি না হয়। আমরা আশা করি এটি কেবল থেমে গেছে character(0)। ধরা যাক এটি করে।

পূর্বোক্ত ব্যাখ্যায় অন্তর্ভুক্ত একটি সূক্ষ্ম বিন্দু হ'ল সম্পাদিত কাজের প্রকরণটি গুণক, সংযোজনীয় নয়। এটি বাস্তবসম্মত: বৃহৎ গোষ্ঠীর শ্রমিকের আউটপুট পরিবর্তনের বিষয়টি পরম আকারে ছোট গ্রুপের পরিবর্তনের চেয়ে বেশি হবে। তদনুসারে, আমরা সাধারণ ন্যূনতম স্কোয়ারের চেয়ে কম ওজনযুক্ত স্কোয়ার ব্যবহার করে আরও ভাল অনুমান করব । এই নির্দিষ্ট মডেলটিতে ব্যবহারের জন্য সর্বোত্তম ওজন হ'ল কাজের পরিমাণের প্রতিদান। (ইভেন্টে কিছু কাজের পরিমাণ শূন্য হয়, আমি শূন্য দ্বারা বিভাজন এড়াতে একটি অল্প পরিমাণ যুক্ত করে এটিকে সম্মতি জানাই))

fit <- lm(work ~ . + 0, data=data, weights=1/(max(work)/10^3+work))
fit.sum <- summary(fit)

এটিতে মাত্র এক বা দুই সেকেন্ড সময় নেওয়া উচিত।

চলার আগে আমাদের ফিটের কিছু ডায়াগনস্টিক টেস্ট করা উচিত। যদিও সেগুলি নিয়ে আলোচনা করা আমাদের এখানে খুব দূরে নিয়ে যাবে, Rদরকারী ডায়াগনস্টিকস তৈরির একটি আদেশ

plot(fit)

(এটি কয়েক সেকেন্ড সময় নেবে: এটি একটি বড় ডেটাসেট!)

যদিও কোডের এই কয়েকটি লাইনটি সমস্ত কাজ করে এবং প্রতিটি শ্রমিকের জন্য অনুমানযোগ্য দক্ষতা ছুঁড়ে দেয়, আমরা কমপক্ষে এক্ষুনি নয় - 1000 টি আউটপুটের লাইনটি স্ক্যান করতে চাই না। ফলাফলগুলি প্রদর্শন করতে গ্রাফিক্স ব্যবহার করা যাক

fit.coef <- coef(fit.sum)
results <- cbind(fit.coef[, c("Estimate", "Std. Error")], 
             Actual=proficiency, 
             Difference=fit.coef[, "Estimate"] - proficiency,
             Residual=(fit.coef[, "Estimate"] - proficiency)/fit.coef[, "Std. Error"])
hist(results[, "Residual"])
plot(results[, c("Actual", "Estimate")])

হিস্টগ্রাম (নীচের চিত্রের নীচের বাম প্যানেল) আনুমানিক এবং প্রকৃত দক্ষতার মধ্যে পার্থক্য, যা অনুমানের স্ট্যান্ডার্ড ত্রুটির গুণক হিসাবে প্রকাশিত হয়। একটি ভাল পদ্ধতির জন্য, এই মানগুলি প্রায় সবসময়ই থাকে2 এবং 2 এবং চারপাশে প্রতিসাম্যিকভাবে বিতরণ করা হবে 0। যদিও এতে 1000 জন কর্মী জড়িত রয়েছে, তবে আমরা প্রমিতভাবে এই প্রমিত কিছু পার্থক্য প্রসারিত করতে দেখব fully3 আর যদি 4 থেকে দূরে 0। ঠিক এখানেই ঘটনাটি: হিস্টোগ্রামটি যতটা আশা করতে পারে তত সুন্দর। (অবশ্যই একটি জিনিস অবশ্যই এটি দুর্দান্ত: এগুলি সর্বোপরি সিমুলেটেড ডেটা But তবে প্রতিসাম্যতা নিশ্চিত করে যে ওজনগুলি তাদের কাজটি সঠিকভাবে করছে।

স্ক্যাটারপ্লট (চিত্রের নীচের ডান প্যানেল) সরাসরি অনুমানযোগ্য দক্ষতার সাথে তুলনা করে। অবশ্যই এটি বাস্তবে উপলব্ধ হবে না, কারণ আমরা প্রকৃত দক্ষতা জানি না: এর মধ্যে কম্পিউটার সিমুলেশনটির শক্তি রয়েছে। পালন:

  • যদি কাজের মধ্যে এলোমেলো কোনও পরিবর্তন না ঘটে ( cv=0এটি দেখার জন্য কোডটি সেট করুন এবং পুনরায় চালু করুন), স্ক্যাটারপ্লটটি একটি নিখুঁত তির্যক রেখা হবে। সমস্ত অনুমান পুরোপুরি নির্ভুল হবে। সুতরাং, এখানে দেখা স্ক্যাটারটি সেই প্রকারের প্রতিফলন ঘটায়।

  • কখনও কখনও, একটি আনুমানিক মান আসল মান থেকে অনেক দূরে। উদাহরণস্বরূপ, এখানে একটি পয়েন্ট রয়েছে (১১০, ১ 160০) যেখানে আনুমানিক দক্ষতা প্রকৃত দক্ষতার চেয়ে প্রায় ৫০% বেশি। এটি কোনও বড় ব্যাচের ডেটাতে প্রায় অনিবার্য। কর্মীদের মূল্যায়ন করার মতো অনুমানগুলি পৃথক ভিত্তিতে ব্যবহার করা হবে কিনা তা মনে রাখবেন । সামগ্রিকভাবে এই অনুমানগুলি সর্বোত্তম হতে পারে তবে কোনও পরিমাণ নিয়ন্ত্রণের বাইরে কাজের কারণগুলির ফলে কাজের উত্পাদনশীলতার প্রকরণ, তারপরে শ্রমিকদের কয়েকটির জন্য অনুমানটি ভুল হবে: কিছু খুব বেশি, কিছু খুব কম। এবং কে আক্রান্ত হয়েছে তা সুনির্দিষ্টভাবে বলার উপায় নেই।

এই প্রক্রিয়া চলাকালীন চারটি প্লট উত্পন্ন হয়।

প্লট

পরিশেষে, নোট করুন যে এই রিগ্রেশন পদ্ধতিটি অন্যান্য ভেরিয়েবলগুলির জন্য নিয়ন্ত্রণের সাথে সহজেই রূপান্তরিত হয় যা সম্ভবত উত্পাদনশীলতার সাথে যুক্ত হতে পারে group এর মধ্যে গ্রুপের আকার, প্রতিটি কাজের প্রচেষ্টার সময়কাল, একটি সময়ের পরিবর্তনশীল, প্রতিটি গ্রুপের পরিচালকের জন্য একটি ফ্যাক্টর ইত্যাদি অন্তর্ভুক্ত থাকতে পারে। এগুলি কেবল রিগ্রেশনে অতিরিক্ত ভেরিয়েবল হিসাবে অন্তর্ভুক্ত করুন।


বাহ, অনেকটা গ্রহণ করার দরকার আছে I আমি অনুমান করি যে আমি এই চার্টগুলির মধ্যে সবচেয়ে কঠোর পরিশ্রমী কর্মী কে কীভাবে বলতে পারি তা আমি নিশ্চিত নই।
গ্রেগ গুইডা

চার্টগুলি কি প্রতি শ্রমিকের ভিত্তিতে?
গ্রেগ গুইডা

নীচের ডান প্যানেলটি সমস্ত 1000 অনুমান উপস্থাপন করে। সর্বোচ্চটি প্রায় 200 এর কাছাকাছি: এটি ডানদিকে সমস্ত দিক থেকে প্রদর্শিত হয়। দক্ষতা হিস্টোগ্রাম এবং অবশিষ্ট হিস্টোগ্রামে 1000 জন কর্মীর ফলাফলও চিত্রিত করা হয়েছে। উপরের ডান প্যানেল, কাজের একটি হিস্টোগ্রাম, প্রায় 5000 টি কাজের জন্য মোট পরিমাণের পরিমাণ প্রদর্শন করে।
whuber

ঠিক আছে, আমি প্রতিটি চার্টের অর্থ পেয়েছি তবে শ্রমিকদের পদমর্যাদার জন্য কীভাবে এগুলি ব্যবহার করব তা নিশ্চিত নই।
গ্রেগ গুইডা

নীচের ডান প্যানেলে উপরে থেকে নীচে পর্যন্ত। কোড এই ফলাফলগুলির একটি টেবিলও তৈরি করে (ডাকা results): আপনি আনুমানিক মান অনুসারে এটিকে বাছাই করতে পারেন। আপনি একটি স্প্রেডশীট, ইত্যাদি এটা রপ্তানি করতে পারেন
whuber

7

আপনি নিজের ডেটাটি এমনভাবে সেট আপ করতে চাইবেন যে 1 টি নির্দেশ করে যে ব্যক্তি সেই সারির কাজটি করেছে এমন দলের একটি অংশ ছিল:

 work.done Alice Bob Carl Dave Eve Fred Greg Harry Isabel
 1.6631071     0   1    1    0   1    0    0     0      0
 0.7951651     1   1    0    0   0    0    0     1      0
 0.2650049     1   1    1    0   0    0    0     0      0
 1.2733771     0   0    0    0   1    0    0     1      1
 0.8086390     1   0    1    0   0    0    0     0      1
 1.7323428     1   0    0    0   0    0    1     0      1
 ...

তারপরে, আপনি কেবল লিনিয়ার রিগ্রেশন করতে পারেন (ধরে নিলেন যে সমস্ত কিছু সংযোজনযোগ্য, ইত্যাদি, যেমন আপনি মন্তব্যে উল্লেখ করেছেন)। ইন R, কমান্ড হবে

lm(work.done ~ . + 0, data = my.data)

"সূত্র" work.done ~ . + 0ইংরেজিতে বলা হয়েছে যে কাজটি করা পরিমাণ অন্যান্য সমস্ত কলামের উপর নির্ভর করে (এটি "" ") এবং কোনও কর্মীবিহীন গোষ্ঠী কোনও কাজ করবে না (এটি" + 0 ")। এটি আপনাকে প্রতিটি কর্মী থেকে গড় গ্রুপ আউটপুটে আনুমানিক অবদান দেবে।

মন্তব্যে আলোচিত হিসাবে, আপনার যদি এমন একজোড়া কর্মী থাকে যা সর্বদা একসাথে থাকে, মডেলটি দু'জন শ্রমিকের অবদানকে একে অপরের থেকে আলাদা করবে না এবং তাদের মধ্যে একটি "এনএ" পাবে।


এটা কি 1000 কর্মী আছে তা বিবেচনা করে? তিনি 1-100 এর গ্রুপ বলতে কী বোঝায়? এমনকি 2 টি সম্পাদনা থেকে স্পষ্টতা দিয়েও আমি দেখতে পাচ্ছি না যেখানে প্রতিটি ডেটা সেট গ্রুপের ব্যক্তিদের সনাক্ত করে? আমি শুধু জানি যে প্রতিটি ব্যক্তি প্রতিদিন প্রায় একই পরিমাণে কাজ করে। যেহেতু আপনারা অনেকে মনে করেন যে সম্ভবত রিগ্রেশনের মাধ্যমে একটি সমাধান রয়েছে তা স্পষ্টভাবে অন্তর্নিহিত অনুমানগুলি কী এবং কোনও ব্যক্তির কাজ কীভাবে সনাক্তযোগ্য? এছাড়াও আমি সমবায় সংক্রান্ত কাজের সমস্ত আলোচনা নিয়ে আশ্চর্য হই। কোথাও স্বতন্ত্রভাবে কাজ করা ছাড়া অন্য কিছু অনুমান করা হয় না।
মাইকেল আর। চেরনিক

আমি দেখতে পাই কেবলমাত্র প্রতিবন্ধকতা হ'ল প্রতিটি ব্যক্তি একরকম এক বিশাল সংখ্যক বিচারের জন্য একই পরিমাণে কাজ পরিচালনা করে? দেখে মনে হচ্ছে আমরা সেই বুদ্ধিমান কিছুটিকে অনুবাদ করার চেষ্টা করছি। তবে এটি কি স্পষ্ট যে ওপি এইটাই উদ্দেশ্য করে ??
মাইকেল আর চেরনিক

@ মিশেল চের্নিক আমি নিশ্চিত না যে আমি আপনার উদ্বেগটি বুঝতে পেরেছি। এটি কি একই ব্যক্তি বিভিন্ন পরীক্ষায় বিভিন্ন পরিমাণে অবদান রাখতে পারে, বা এর থেকেও আরও কিছু আছে?
ডেভিড জে হ্যারিস

@ ডেভিড হারিস আমার ধারণা আপনার অনুমানগুলি সঠিক হলে আপনার একটি ভাল সমাধান রয়েছে have তবে আমি এত কর্মী সহ প্রতিটি ব্যক্তির সনাক্তকরণ সম্পর্কে উদ্বিগ্ন। ওপি চিন্তা করে যে বড় আকারের নমুনা আকার সাহায্য করে। তবে আপনি যা দিয়েছেন এবং কিছু মডেলিং অনুমানের মতো কাঠামো থাকা দরকার। আমি কেবল মনে করি না যে সমস্যাটি সমাধান করার জন্য আমাদের প্রয়োজনীয় সমস্ত কিছু তিনি নির্দিষ্ট করে দিয়েছেন।
মাইকেল আর চেরনিক

@ মিশেল চের্নিক আমি মনে করি যে আমরা যদি শ্রমিকরা স্বাধীন বলে ধরে নিই, তবে একটি রৈখিক মডেল বেশ নিরাপদ এবং লিনিয়ারিটি আমাদের কিছু সমস্যা থেকে রক্ষা করতে পারে। ঝাঁকুনি সম্ভবত ওজন সম্পর্কে সঠিক, যা সাহায্য করবে। কর্মী এবং গোষ্ঠীগুলির জন্য এলোমেলো প্রভাবগুলি সনাক্তকরণের সমস্যা থাকলে প্যারামিটারের অনুমানকে বোকা বানাতে সহায়তা করতে পারে। সম্ভবত আরও কিছু উন্নতি করা যেতে পারে, তবে আমি এখনও মনে করি যে এটি সঠিক পথে রয়েছে, ধরে নিই শ্রমিকরা মূলত স্বাধীন।
ডেভিড জে হ্যারিস
আমাদের সাইট ব্যবহার করে, আপনি স্বীকার করেছেন যে আপনি আমাদের কুকি নীতি এবং গোপনীয়তা নীতিটি পড়েছেন এবং বুঝতে পেরেছেন ।
Licensed under cc by-sa 3.0 with attribution required.