দুটি নিয়মিত ভাষার সংমিশ্রণ কখন দ্ব্যর্থহীন?


16

এই ভাষাগুলির A এবং B , এর কথা বলা যে তাদের সংযুক্তকরণের দিন AB হয় দ্ব্যর্থহীন যদি সব শব্দের জন্য wAB , সেখানে ঠিক এক পচানি w=ab সঙ্গে aA এবং bB , আর দ্ব্যর্থক অন্যথায়। একটি তুচ্ছ উদাহরণ হিসাবে (আমি ওখানে জন্য অনুসন্ধান করতে এই সম্পত্তি-হার্ড জিনিসের জন্য একটি প্রতিষ্ঠিত শব্দটি যদি জানি না), এর সংযুক্তকরণের {ε,a} নিজেই সঙ্গে (দ্ব্যর্থক ), তবে { a এর উপসংহারw=a=εa=aε নিজেই সঙ্গে দ্ব্যর্থহীন নয়।{a}

দুটি নিয়মিত ভাষার সংমিশ্রণ দ্ব্যর্থহীন কিনা তা সিদ্ধান্ত নেওয়ার জন্য কি অ্যালগরিদম আছে?


1
গাহ, এটি পুরোপুরি একটি নতুন সিএস সমস্যা, তাই না? সত্যি বলতে, আমি খুব চেষ্টা করিনি; আমি আশা করছিলাম যে সাহিত্যের কোথাও এটির জন্য একটি প্রতিষ্ঠিত অ্যালগরিদম আছে এবং আমাকে চক্রটি পুনর্নির্মাণে যেতে হবে না। আমি এখানে সফ্টওয়্যার লিখছি; আমি কেবল কয়েকটি সিএস কোর্স নিয়েছি (বেশ কয়েক বছর আগে) তাই আমি মূলত উইকিপিডিয়া থেকে শুরু করছি। আমি জানি যে কেউ তাদের উত্তরের জন্য কাজ করতে চায় না এমন কাউকে পছন্দ করে না, সুতরাং কোনও পাঠ্যপুস্তক বা একটি কাগজ বা এমন কিছু যদি আপনি আমাকে কেবল একটি অ্যালগোরিদম হস্তান্তর করার পরিবর্তে আমাকে নির্দেশ করতে পারেন তবে তা সহায়ক হবে! ধন্যবাদ!
rstern

I added this as a comment because, well its relatively off topic, but perhaps can lead you to some help. The Unicode Consortium has a few processes for determining the commonality between languages. I have read a very informative link on their site but for the life of me could not find it today to make this an answer instead. If you have time to research this here is their FAQ page unicode.org/faq
htm11h

উত্তর:


10

ইঙ্গিত: এবং বি এর জন্য প্রদত্ত ডিএফএ , একটি এনএফএ গঠন করুন যা কমপক্ষে দুটি পৃথক পচে যাওয়া বিতে শব্দ গ্রহণ করে । NFA জন্য আদর্শ NFA দুটি অনুলিপি ট্র্যাক রাখে একটি বি (জন্য DFAs যোগদান করে গঠিত একটি এবং বি সঙ্গে ε , ট্রানজিশন) নিশ্চিত যে থেকে সুইচ একটি থেকে বি দুটি ভিন্ন বিন্দুতে ঘটবে।ABABABABϵAB


ইঙ্গিতটির জন্য ধন্যবাদ! সুতরাং যদি আমি বুঝতে পারি, আমি অস্পষ্ট শব্দের জন্য একটি এনএফএ তৈরি করতে পারি এবং তারপরে শূন্যতার জন্য সেই অটোমেটনটি পরীক্ষা করতে পারি। জটিল অংশটি " A থেকে B স্যুইচ দুটি পৃথক পয়েন্টে ঘটে তা নিশ্চিত করে" বলে মনে হচ্ছে । আমি নিশ্চিত নই যে দুটি বি ডিএফএর ক্রস প্রোডাক্ট (?) নেওয়া এবং ( এ- টার্মিনাল, এ- টার্মিনাল) প্রোডাক্টের সমস্তটি মুছে ফেলা ব্যতীত কীভাবে এটি করা যায় - আমি হ্যান্ডওয়েভ করছি, আমি চিন্তিত যে এ- বি এনএফএ থেকে বি ডিএফএ- তে রূপান্তর - টার্মিনাল ধারণাটি নিয়ে স্ক্রু তৈরি করবে। শব্দ, ওম, অদক্ষ যদিও; সফ্টওয়্যার জন্য উপযুক্ত কোন অ্যালগরিদম উপযুক্ত?ABABABAAABABA
rstern

Yes, it doesn't sound too efficient, though there is always the option of doing it in a smart way. I'm not aware of any specific algorithm for this problem, but one might exist.
Yuval Filmus

7

Updated (thanks to Yuval Filmus).

Given two languages X and Y of A, let

X1Y={uAthere exists xX such that xuY}YX1={uAthere exists xX such that uxY}
I claim that XY is unambiguous if and only if the language X1XYY1A+ is empty.

প্রুফ । ধরুন যে অস্পষ্ট। এরপর একটি শব্দ বিদ্যমান তোমার দর্শন লগ করা যার উপর দুই decompositions হয়েছে এক্স ওয়াই বলে তোমার দর্শন লগ করা = এক্স 1 Y 2 = এক্স 2 Y 1 , যেখানে এক্স 1 , x এর 2এক্স এবং ওয়াই 1 , Y 2ওয়াই । সাধারণতার ক্ষতি ছাড়াই, আমরা ধরে নিতে পারি যে x 1 এক্স 2 এর একটি উপসর্গ , অর্থাৎ, x 2 = xXYuXYu=x1y2=x2y1x1,x2Xy1,y2Yx1x2কিছু জেড + এর জন্য z। এটি অনুসরণ করে যে আপনি =x2=x1zzA+u=x1y2=x1zy1y2=zy1zX1XYY1

X1XYY1zx1,x2X and y1,y2Y such that x2=x1z and y2=zy1. It follows that x2y1=x1zy1=x1y2 and hence the product XY is ambiguous.

If X and Y are regular, then both X1X and YY1 are regular and thus X1XYY1 is also regular (see Yuval's answer for an automaton accepting this language).


What if z is the empty word?
Yuval Filmus

Ooops. I update.
J.-E. Pin
আমাদের সাইট ব্যবহার করে, আপনি স্বীকার করেছেন যে আপনি আমাদের কুকি নীতি এবং গোপনীয়তা নীতিটি পড়েছেন এবং বুঝতে পেরেছেন ।
Licensed under cc by-sa 3.0 with attribution required.