এই পদ্ধতিগুলি মোটামুটি দুটি সময়-পদক্ষেপের পদ্ধতির ক্ষেত্রে বর্ণনা করা যেতে পারে, এখানে এবং এফ দ্বারা বোঝানো হয়েছে । জি এবং এফ উভয়ই
সমাধানটির কাছাকাছি স্থির করে প্রাথমিক মান
U n ≈ u ( t n ) প্রচার করেজিএফজিএফইউএন≈ তোমার দর্শন লগ করা ( Tএন)
u ( t ) = u0+ + ∫টি0চ( τ), আপনি ( τ)) )ঘτ
থেকে করার টি এন + + 1 (যে ˙ তোমার দর্শন লগ করা = চ ( U , T ) )। পদ্ধতিগুলি দক্ষ হওয়ার জন্য, অবশ্যই এটি অবশ্যই প্রবর্তন করা উচিত যে জি প্রচারক কমপিটেশনালি এফ প্রচারকারীর তুলনায় কম ব্যয়বহুল , এবং তাই
জি সাধারণত একটি নিম্ন-আদেশ পদ্ধতি method যেহেতু পদ্ধতির সামগ্রিক সঠিকতার সঠিকতা দ্বারা সীমাবদ্ধ
এফ প্রচারক, এফ সাধারণত উচ্চ অর্ডার ও ছাড়াও আর একটি ছোট সময় পদক্ষেপ ব্যবহার করতে পারেন
জি । এসব কারণে জিটিএনটিn + 1তোমার দর্শন লগ করা˙=f(u,t)GFGFFGGমোটা প্রচারক এবং এফ হিসাবে উল্লেখ করা হয়F সূক্ষ্ম প্রচারক ।
U0n+1n=0…N−1NF(tn+1,tn,Ukn)
Uk+1n+1=G(tn+1,tn,Uk+1n)+F(tn+1,tn,Ukn)−G(tn+1,tn,Ukn)
for n=0…N−1. That is, the fine propagator is used
to refine the solution in each time slice in parallel, while the
coarse propagator is used to propagate the refinements performed by
the fine propagator through time to later processors. Note that at this point we haven't specified what the G and F propagators are: they could be, for example, Runge-Kutta schemes of varying order.
The PITA method is very similar to Parareal, but it keeps track of previous updates and only updates the initial condition on each processor in a manner reminiscent of Krylov subspace methods. This allows PITA to solve linear second-order equations which Parareal cannot.
The PFASST method differs from the Parareal and PITA methods in two fundamental ways: first, it relies on the iterative Spectral Deferred Correction (SDC) time-stepping scheme, and second it incorporates Full Approximation Scheme corrections to the coarse propagator, and in fact PFASST can use a hierarchy of propagators (instead of just two). Using SDC allows the time-parallel and SDC iterations are hybridized which relaxes the efficiency constraints of Parareal and PITA. Using FAS corrections enables a lot of flexibility when constructing the coarse propagators of PFASST (making the coarse propagators as cheap as possible helps increase parallel efficiency). Coarsening strategies include: time-coarsening (fewer SDC nodes), space-coarsening (for grid based PDEs), operator coarsening, and reduced physics.
I hope this outlines the fundamentals, differences, and similarities between the algorithms. Please see the references in this post for more details.
Regarding applications, the methods have been applied to a wide variety of equations (planetary orbits, Navier-Stokes, particle systems, chaotic systems, structural dynamics, atmospheric flows etc etc). When applying time-parallelization to a given problem you should certainly validate the method in a manner appropriate for the problem being solved.