দুটি হিস্টগ্রামের মধ্যে প্রচুর দূরত্বের ব্যবস্থা রয়েছে। আপনি এই ব্যবস্থাগুলির একটি ভাল শ্রেণীকরণ এখানে পড়তে পারেন:
প্রো। প্রিপিতে কে। মেশগি এবং এস। ইশেই, "ট্র্যাকিংয়ের নির্ভুলতা উন্নত করতে গ্রিডিং সহ কালার্সের হিস্টোগ্রাম প্রসারিত করা হচ্ছে"। এমভিএ'15, টোকিও, জাপান, মে 2015।
আপনার সুবিধার্থে সর্বাধিক জনপ্রিয় দূরত্ব ফাংশন এখানে তালিকাভুক্ত করা হয়েছে:
- L0 বা হ্যালিঞ্জার দূরত্ব
DL0=∑ih1(i)≠h2(i)
- L1 , ম্যানহাটন বা সিটি ব্লক দূরত্ব
DL1=∑i|h1(i)−h2(i)|
- L=2 বা ইউক্লিডিয়ান দূরত্ব
DL2=∑i(h1(i)−h2(i))2−−−−−−−−−−−−−−−√
- এল ∞ বা চাইবিশেভ দূরত্ব∞
DL∞=maxi|h1(i)−h2(i)|
- এল পি বা ভগ্নাংশ দূরত্ব (মিনকভস্কি দূরত্বের পরিবারের অংশ)p
DLp=(∑i|h1(i)−h2(i)|p)1/p এবং0<p<1
D∩=1−∑i(min(h1(i),h2(i))min(|h1(i)|,|h2(i)|)
DCO=1−∑ih1(i)h2(i)
DCB=∑i|h1(i)−h2(i)|min(|h1(i)|,|h2(i)|)
DCR=∑i(h1(i)−1n)(h2(i)−1n)∑i(h1(i)−1n)2∑i(h2(i)−1n)2√
- কোলমোগোরভ-স্মারনভ ডাইভারজেন্স
DKS=maxi|h1(i)−h2(i)|
DMA=∑i|h1(i)−h2(i)|
- ক্র্যামার-ভন মাইজেস দূরত্ব
DCM=∑i(h1(i)−h2(i))2
Dχ2=∑i(h1(i)−h2(i))2h1(i)+h2(i)
DBH=1−∑ih1(i)h2(i)−−−−−−−−√−−−−−−−−−−−−−−−−√ & hellinger
DSC=∑i(h1(i)−−−−√−h2(i)−−−−√)2
- Kullback-Liebler Divergance
DKL=∑ih1(i)logh1(i)m(i)
DJD=∑i(h1(i)logh1(i)m(i)+h2(i)logh2(i)m(i))
- Earth Mover's Distance (this is the first member of Transportation distances that embed binning information A into the distance, for more information please refer to the abovementioned paper or Wikipedia entry.
DEM=minfij∑i,jfijAijsumi,jfij
∑jfij≤h1(i),∑jfij≤h2(j),∑i,jfij=min(∑ih1(i)∑jh2(j)) and fij represents the flow from
i to j
DQU=∑i,jAij(h1(i)−h2(j))2−−−−−−−−−−−−−−−−−−−√
DQC=∑i,jAij(h1(i)−h2(i)(∑cAci(h1(c)+h2(c)))m)(h1(j)−h2(j)(∑cAcj(h1(c)+h2(c)))m)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−√ and 00≡0
A Matlab implementation of some of these distances is available from my GitHub repository:
https://github.com/meshgi/Histogram_of_Color_Advancements/tree/master/distance
Also you can search guys like Yossi Rubner, Ofir Pele, Marco Cuturi and Haibin Ling for more state-of-the-art distances.
Update: Alternative explaination for the distances appears here and there in the literature, so I list them here for sake of completeness.
- Canberra distance (another version)
DCB=∑i|h1(i)−h2(i)||h1(i)|+|h2(i)|
- Bray-Curtis Dissimilarity, Sorensen Distance (since the sum of histograms are equal to one, it equals to DL0)
DBC=1−2∑ih1(i)=h2(i)∑ih1(i)+∑ih2(i)
- Jaccard Distance (i.e. intersection over union, another version)
DIOU=1−∑imin(h1(i),h2(i))∑imax(h1(i),h2(i))