@ হুইবার আপনাকে তিনটি উত্তরের জন্য নির্দেশ করেছেন তবে সম্ভবত আমি এখনও মূল্যবোধের কিছু লিখতে পারি। আপনার স্পষ্ট প্রশ্নটি যেমন আমি বুঝতে পেরেছি তা হ'ল:
আমার লাগানো প্রদত্ত Y আমি = মি এক্স আমি + + খy^i=m^xi+b^ (নোটিশ আমি 'টুপি' যোগ করা হয়েছে) , এবং আমার অবশিষ্টাংশ স্বাভাবিকভাবে বিতরণ অভিমানী হয়, , আমি এখনো হিসাবে একটি যে পূর্বাভাস দিতে পারি অলক্ষিত প্রতিক্রিয়া, Y এন ই W , সঙ্গে একটি পরিচিত predictor মান, এক্স এন ই W , ব্যবধান মধ্যে পড়ে যাবে ( Y - σ ই , Y + + σN(0,σ^2e)ynewxnew , সম্ভাব্যতার সাথে 68%?(y^−σe,y^+σe)
স্বজ্ঞাতভাবে, উত্তরটি 'হ্যাঁ' হওয়া উচিত বলে মনে হলেও সত্য উত্তরটি সম্ভবত । এটি তখন ঘটবে যখন প্যারামিটারগুলি (যেমন, এবং σ ) জানা থাকে এবং ত্রুটি ছাড়াই। আপনি যেহেতু এই প্যারামিটারগুলি অনুমান করেছেন তাই আমাদের তাদের অনিশ্চয়তা বিবেচনায় নেওয়া উচিত। m,b,σ
আসুন প্রথমে আপনার অবশিষ্টাংশগুলির মানক বিচ্যুতি সম্পর্কে ভাবি। এটি আপনার ডেটা থেকে অনুমান করা হয়েছে বলে অনুমানের ক্ষেত্রে কিছু ত্রুটি হতে পারে। ফলস্বরূপ, আপনার পূর্বাভাস ব্যবধান গঠনের জন্য আপনার যে বিতরণটি ব্যবহার করা উচিত তা সাধারণ নয়, হওয়া উচিত । তবে, যেহেতু টি দ্রুত স্বাভাবিকের দিকে রূপান্তরিত হয়, এটি অনুশীলনে সমস্যা হওয়ার সম্ভাবনা কম। tdf errort
সুতরাং, আমরা শুধু ব্যবহার করতে পারেন Y নতুন ± টি ( 1 - α / 2 , df প্রয়োগ ত্রুটি ) গুলি পরিবর্তে Y নতুন ± z- র ( 1 - α / 2 ) গুলি , এবং আমাদের শুভ পথে সম্পর্কে যাব? দুর্ভাগ্যক্রমে না. বড় ইস্যু সেখানে অনিশ্চয়তা কারণে যে অবস্থানে সাড়া শর্তসাপেক্ষ গড় আপনার অনুমান সম্পর্কে অনিশ্চয়তা থাকেন তবে আপনার অনুমান হয় মি & খ । সুতরাং,y^new±t(1−α/2, df error)sy^new±z(1−α/2)sm^b^আপনার ভবিষ্যৎবাণী স্ট্যান্ডার্ড ডেভিয়েশন শুধু চেয়ে বেশি নিগমবদ্ধ প্রয়োজন serror । কারণ ভেরিয়ানস যোগ , ভবিষ্যৎবাণী আনুমানিক ভ্যারিয়েন্স হবে:
নোটিশ যে, " এক্স " নতুন জন্য নির্দিষ্ট মান প্রতিনিধিত্ব করতে subscripted হয় পর্যবেক্ষণ এবং " s 2 " যথাযথভাবে সাবস্ক্রিপশন করা হয়েছে। অর্থাৎ, আপনার পূর্বাভাস ব্যবধানটি এক্স বরাবর নতুন পর্যবেক্ষণের অবস্থানের উপর নির্ভরশীল
s2predictions(new)=s2error+Var(m^xnew+b^)
xs2xঅক্ষ। আপনার ভবিষ্যদ্বাণীগুলির স্ট্যান্ডার্ড বিচ্যুতিটি নিম্নলিখিত সূত্রের সাথে আরও স্বাচ্ছন্দ্যে অনুমান করা যেতে পারে:
হিসাবে একটি আকর্ষণীয় সাইড নোট, আমরা এই সমীকরণ থেকে ভবিষ্যদ্বাণী অন্তর সম্পর্কে কিছু তথ্য আবিষ্কার করতে পারেন। প্রথমত, ভবিষ্যদ্বাণী অন্তর আরো ডেটা আমরা ছিল যখন আমরা (এই হল কম অনিশ্চয়তা আছে, কারণ ভবিষ্যদ্বাণী মডেল নির্মিত সংকীর্ণ হতে হবে
মি&
খ)। দ্বিতীয়ত, পূর্বাভাসগুলি সুনির্দিষ্ট হবে যদি সেগুলিআপনার মডেলটি বিকাশের জন্য ব্যবহৃত
x টিমানের সাথে তৈরি করা হয়, তৃতীয় মেয়াদটির সংখ্যার
0 হবে। কারণটি হ'ল সাধারণ পরিস্থিতিতে
এক্সএর গড় সময়ে আনুমানিক slাল সম্পর্কে কোনও অনিশ্চয়তা নেই
spredictions(new)=s2error(1+1N+(xnew−x¯)2∑(xi−x¯)2)−−−−−−−−−−−−−−−−−−−−−−−−√
m^b^x0x, রিগ্রেশন লাইনের প্রকৃত উলম্ব অবস্থান সম্পর্কে কেবল কিছু অনিশ্চয়তা। সুতরাং, পূর্বাভাস মডেলগুলি তৈরির জন্য কিছু পাঠ শিখতে হবে: যে আরও তথ্য উপাত্ত, 'তাত্পর্য' সন্ধানের সাথে নয়, ভবিষ্যতের ভবিষ্যদ্বাণীগুলির নির্ভুলতার উন্নতি করার জন্য; এবং যে আপনার ভবিষ্যতে ভবিষ্যদ্বাণী করা উচিত (যেখানে এই সংখ্যাকে হ্রাস করতে) আপনার ডেটা সংগ্রহের প্রচেষ্টাগুলি কেন্দ্রিয় হওয়া উচিত তবে সেই কেন্দ্র থেকে পর্যবেক্ষণগুলি যতটা সম্ভব প্রসারিত করুন (সেই সংখ্যাকে সর্বাধিকতর করতে)।
এই পদ্ধতিতে সঠিক মান গণনা করে, আমরা তারপরে এটি উল্লিখিত হিসাবে উপযুক্ত বিতরণ দিয়ে ব্যবহার করতে পারি । t