প্রশ্ন ট্যাগ «feature-extraction»

ভেরিয়েবলগুলি (পূর্বাভাস বা ব্যাখ্যার জন্য ব্যবহৃত) রিগ্রেশন বা রিগ্রেশন-জাতীয় মডেলগুলিতে (যেমন ক্লাস্টারিং, বৈষম্য) ব্যবহৃত হয়। এ জাতীয় ভেরিয়েবলগুলি তৈরি করা বা তাদের মধ্যে সেরাটি নির্বাচন করা সম্পর্কিত প্রশ্নের জন্য এই ট্যাগটি ব্যবহার করুন।

11
মাত্রা হ্রাস কি? বৈশিষ্ট্য নির্বাচন এবং নিষ্কাশন মধ্যে পার্থক্য কি?
উইকিপিডিয়া থেকে, মাত্রিকতা হ্রাস বা মাত্রা হ্রাস বিবেচনাধীন র্যান্ডম ভেরিয়েবলের সংখ্যা হ্রাস করার প্রক্রিয়া, এবং বৈশিষ্ট্য নির্বাচন এবং বৈশিষ্ট্য নিষ্কাশন মধ্যে বিভক্ত করা যেতে পারে। বৈশিষ্ট্য নির্বাচন এবং বৈশিষ্ট্য নিষ্কাশন মধ্যে পার্থক্য কি? প্রাকৃতিক ভাষা প্রক্রিয়াকরণ কার্যে মাত্রা হ্রাসের উদাহরণ কী?

6
ফিচার ইঞ্জিনিয়ারিংয়ের জন্য কি কোনও সরঞ্জাম আছে?
বিশেষত আমি যা খুঁজছি তা হ'ল কিছু কার্যকারিতা সহ সরঞ্জাম যা ইঞ্জিনিয়ারিং বৈশিষ্ট্যযুক্ত। আমি সহজেই মসৃণ করতে, কল্পনা করতে, ফাঁকগুলি পূরণ করতে সক্ষম হতে চাই, এমএস এক্সেলের অনুরূপ কিছু, তবে এতে ভিবির পরিবর্তে অন্তর্নিহিত ভাষা হিসাবে আর রয়েছে।

6
বিভাগ এবং সংখ্যা হিসাবে মাস এবং ঘন্টা এর মতো এনকোডিং বৈশিষ্ট্য?
মেশিন লার্নিং মডেলটিতে ফ্যাক্টর বা সংখ্যা হিসাবে মাস এবং ঘন্টাের মতো বৈশিষ্ট্যগুলি এনকোড করা ভাল? একদিকে আমি অনুভব করেছি যে সংখ্যার এনকোডিংটি যুক্তিসঙ্গত হতে পারে, কারণ সময়টি একটি অগ্রগতির অগ্রগতি প্রক্রিয়া (পঞ্চম মাসের পরে ষষ্ঠ মাস অনুসরণ করা হয়) তবে অন্যদিকে আমি মনে করি চক্রীয় প্রকৃতির কারণে শ্রেণিবদ্ধ এনকোডিং আরও …

3
ইনপুট ডেটাতে বৈশিষ্ট্যটির রূপান্তর
আমি এই ওটিটিও কেগল চ্যালেঞ্জের সমাধান সম্পর্কে পড়ছিলাম এবং প্রথম স্থানের সমাধানটি ইনপুট ডেটা এক্সের জন্য বেশ কয়েকটি রূপান্তর ব্যবহার করেছে বলে মনে হচ্ছে, উদাহরণস্বরূপ লগ (এক্স + 1), স্কয়ার্ট (এক্স + 3/8), ইত্যাদি কি আছে? বিভিন্ন শ্রেণিবদ্ধে কোন ধরণের রূপান্তরগুলি প্রয়োগ করতে হবে সে সম্পর্কে সাধারণ নির্দেশিকা? আমি গড়-ভেরি …

3
চক্রীয় অর্ডিনাল বৈশিষ্ট্যগুলিকে রূপান্তর করার একটি ভাল উপায় কী?
আমার বৈশিষ্ট্য হিসাবে আমি 'ঘন্টা' ক্ষেত্রটি করছি, তবে এটি একটি চক্রীয় মান নেয়। '23' এবং '0' ঘন্টা এর মতো তথ্য সংরক্ষণের জন্য আমি কীভাবে বৈশিষ্ট্যটির রূপান্তর করতে পারি close একটি উপায় যা আমি ভাবতে পারি তা হ'ল রূপান্তর করা: min(h, 23-h) Input: [0 1 2 3 4 5 6 7 …

3
কীভাবে অজানা বৈশিষ্ট্যগুলিতে ফিচার ইঞ্জিনিয়ারিং সঞ্চালন করবেন?
আমি একটি কাগল প্রতিযোগিতায় অংশ নিচ্ছি। ডেটাসেটের প্রায় 100 টি বৈশিষ্ট্য রয়েছে এবং সমস্ত অজানা (আসলে তারা কী উপস্থাপন করে সেই ক্ষেত্রে)। মূলত এগুলি কেবল সংখ্যা। এই বৈশিষ্ট্যগুলিতে লোকেরা প্রচুর ফিচার ইঞ্জিনিয়ারিং করছে। আমি ভাবছি যে ঠিক কীভাবে কোনও অজানা বৈশিষ্ট্যগুলিতে ফিচার ইঞ্জিনিয়ারিং করতে সক্ষম হয়? কেউ দয়া করে আমাকে …

3
পাইথনে চিত্রের নিষ্কাশন
আমার ক্লাসে আমাকে একটি চিত্রের কোনও বস্তু ফিলাম পোরিফেরা (সমুদ্র স্পঞ্জ) বা অন্য কোনও বস্তুর উদাহরণ কিনা তা নির্ধারণ করতে দুটি শ্রেণিবদ্ধ ব্যবহার করে একটি অ্যাপ্লিকেশন তৈরি করতে হবে। যাইহোক, পাইথনটিতে নিষ্কাশন কৌশলগুলির বৈশিষ্ট্যটি এলে আমি সম্পূর্ণ হারিয়ে ফেলেছি। আমার উপদেষ্টা আমাকে ক্লাসে অন্তর্ভুক্ত করা হয়নি এমন চিত্রগুলি ব্যবহার করতে …

5
সামুদ্রিক হটম্যাপটি আরও বড় করুন
আমি corr()একটি আসল df এর বাইরে একটি df তৈরি করি । corr()Df প্রয়োগ আউট 70 এক্স 70 এসে তা হিটম্যাপ ঠাহর করা অসম্ভব ... sns.heatmap(df)। যদি আমি এটি প্রদর্শনের চেষ্টা করি corr = df.corr(), টেবিলটি স্ক্রিনের সাথে খাপ খায় না এবং আমি সমস্ত সম্পর্কিততা দেখতে পাচ্ছি। dfএটির আকার নির্বিশেষে পুরো …
17 visualization  pandas  plotting  machine-learning  neural-network  svm  decision-trees  svm  efficiency  python  linear-regression  machine-learning  nlp  topic-model  lda  named-entity-recognition  naive-bayes-classifier  association-rules  fuzzy-logic  kaggle  deep-learning  tensorflow  inception  classification  feature-selection  feature-engineering  machine-learning  scikit-learn  tensorflow  keras  encoding  nlp  text-mining  nlp  rnn  python  neural-network  feature-extraction  machine-learning  predictive-modeling  python  r  linear-regression  clustering  r  ggplot2  neural-network  neural-network  training  python  neural-network  deep-learning  rnn  predictive-modeling  databases  sql  programming  distribution  dataset  cross-validation  neural-network  deep-learning  rnn  machine-learning  machine-learning  python  deep-learning  data-mining  tensorflow  visualization  tools  sql  embeddings  orange  feature-extraction  unsupervised-learning  gan  machine-learning  python  data-mining  pandas  machine-learning  data-mining  bigdata  apache-spark  apache-hadoop  deep-learning  python  convnet  keras  aggregation  clustering  k-means  r  random-forest  decision-trees  reference-request  visualization  data  pandas  plotting  neural-network  keras  rnn  theano  deep-learning  tensorflow  inception  predictive-modeling  deep-learning  regression  sentiment-analysis  nlp  encoding  deep-learning  python  scikit-learn  lda  convnet  keras  predictive-modeling  regression  overfitting  regression  svm  prediction  machine-learning  similarity  word2vec  information-retrieval  word-embeddings  neural-network  deep-learning  rnn 

2
নিউরাল নেটওয়ার্কের জন্য কীভাবে বৈশিষ্ট্যগুলি চয়ন করবেন?
আমি জানি যে এই প্রশ্নের কোনও সুস্পষ্ট উত্তর নেই, তবে ধরা যাক যে আমার কাছে প্রচুর ডেটা সহ একটি বিশাল নিউরাল নেটওয়ার্ক রয়েছে এবং আমি ইনপুটটিতে একটি নতুন বৈশিষ্ট্য যুক্ত করতে চাই। "সেরা" উপায়টি হ'ল নতুন বৈশিষ্ট্যটির সাথে নেটওয়ার্কটি পরীক্ষা করা এবং ফলাফলগুলি দেখা, তবে বৈশিষ্ট্যটি কি অনন্যভাবে সহায়তা করে …

5
বৈশিষ্ট্য নির্বাচন বনাম বৈশিষ্ট্য নিষ্কাশন। কোনটি কখন ব্যবহার করবেন?
বৈশিষ্ট্য নিষ্কাশন এবং বৈশিষ্ট্য নির্বাচন মূলত ডেটার মাত্রিকতা হ্রাস করে, তবে বৈশিষ্ট্য নিষ্কাশনটি যদি আমি সঠিক থাকি তবে ডেটাটিকে আরও বিভাজ্য করে তোলে। কোন কৌশলটি অন্যের চেয়ে বেশি পছন্দ হবে এবং কখন? আমি ভাবছিলাম, যেহেতু বৈশিষ্ট্য নির্বাচনটি মূল ডেটা এবং এর বৈশিষ্ট্যগুলিকে সংশোধন করে না, তাই আমি ধরে নিয়েছি যে …

3
কেন আমরা স্কিউড ডেটাগুলিকে একটি সাধারণ বিতরণে রূপান্তর করি
আমি কাগল ( হাউস মূল্য সম্পর্কিত হিউম্যান অ্যানালগের কার্নেল: অ্যাডভান্স রিগ্রেশন টেকনিকস ) এর আবাসন মূল্য প্রতিযোগিতার একটি সমাধানের মধ্য দিয়ে যাচ্ছিলাম এবং এই অংশটি পেরিয়ে এসেছি: # Transform the skewed numeric features by taking log(feature + 1). # This will make the features more normal. from scipy.stats import skew …

2
এনএলপিতে শ্রেণিবিন্যাস প্রক্রিয়াতে পার্স গাছ থেকে সাধারণত কোন বৈশিষ্ট্য ব্যবহৃত হয়?
আমি বিভিন্ন ধরণের পার্স গাছের কাঠামো অন্বেষণ করছি। দুটি বহুল পরিচিত পার্স গাছের কাঠামো হ'ল ক) নির্বাচনী কেন্দ্র ভিত্তিক পার্স ট্রি এবং খ) নির্ভরতা ভিত্তিক পার্স গাছের কাঠামো। স্ট্যানফোর্ড এনএলপি প্যাকেজ ব্যবহার করে আমি উভয় প্রকারের পার্স গাছের কাঠামো উত্পন্ন করতে সক্ষম am তবে আমার শ্রেণিবিন্যাস কার্যের জন্য কীভাবে এই …

1
একটি হট এনকোডিং এবং একটি এনকোডিং ছেড়ে দেওয়ার মধ্যে পার্থক্য কী?
আমি একটি উপস্থাপনাটি পড়ছি এবং এটি একটি ছাড়ার এনকোডিং ব্যবহার না করার পরামর্শ দিচ্ছে, তবে এটি একটি গরম এনকোডিং সহ ঠিক আছে। আমি ভেবেছিলাম তারা দুজনই এক রকম ছিল। তাদের মধ্যে পার্থক্য কি কেউ বর্ণনা করতে পারেন?

3
NER- র জন্য নিরীক্ষণযোগ্য বৈশিষ্ট্য শেখা
আমি সিআরএফ অ্যালগরিদম ব্যবহার করে আমার হস্তশিল্পের বৈশিষ্ট্যগুলির সাহায্যে NER সিস্টেমটি প্রয়োগ করেছি যা বেশ ভাল ফলাফল দিয়েছে। জিনিসটি হ'ল আমি পস ট্যাগ এবং লেমাসহ বিভিন্ন বৈশিষ্ট্য ব্যবহার করেছি। এখন আমি আলাদা ভাষার জন্য একই NER করতে চাই। এখানে সমস্যা হ'ল আমি পস ট্যাগ এবং লেমাস ব্যবহার করতে পারি না। …

3
চিত্রগুলি থেকে নিরীক্ষণযোগ্য বৈশিষ্ট্য নিষ্কাশনের জন্য কীভাবে জিএন ব্যবহার করবেন?
আমি বুঝতে পেরেছি যে GAN কীভাবে কাজ করে যখন দুটি নেটওয়ার্ক (উত্পাদক এবং বৈষম্যমূলক) একে অপরের সাথে প্রতিযোগিতা করে। আমি একটি ডিসিজিএএন তৈরি করেছি (কনভোলশনাল ডিস্টোমিনিস্টর এবং ডি-কনভুলেশনাল জেনারেটর সহ জিএএন) যা এখন সফলভাবে এমএনআইএসটি ডেটাসেটের মতো হস্তাক্ষর ডিজিট তৈরি করে। আমি চিত্রগুলি থেকে বৈশিষ্ট্যগুলি বের করার জন্য জিএএন এর …

আমাদের সাইট ব্যবহার করে, আপনি স্বীকার করেছেন যে আপনি আমাদের কুকি নীতি এবং গোপনীয়তা নীতিটি পড়েছেন এবং বুঝতে পেরেছেন ।
Licensed under cc by-sa 3.0 with attribution required.