প্রশ্ন ট্যাগ «sentiment-analysis»

1
এক্সজিবিস্ট স্কলারন গ্রেডিয়েন্টবুস্টিং ক্লাসিফায়ারের চেয়ে এত দ্রুত কেন?
আমি 100 সংখ্যার বৈশিষ্ট্য সহ 50 কে উদাহরণের মাধ্যমে গ্রেডিয়েন্ট বুস্টিং মডেলটি প্রশিক্ষণের চেষ্টা করছি। XGBClassifierআমার মেশিনে 43 সেকেন্ডের মধ্যে 500 গাছ হ্যান্ডল করে, যখন GradientBoostingClassifier1 মিনিট 2 সেকেন্ডের মধ্যে কেবল 10 টি গাছ (!) পরিচালনা করে :( আমি কয়েক ঘন্টা লাগবে বলে 500 গাছ বাড়ানোর চেষ্টা করতে বিরক্ত করিনি। …
29 scikit-learn  xgboost  gbm  data-mining  classification  data-cleaning  machine-learning  reinforcement-learning  data-mining  bigdata  dataset  nlp  language-model  stanford-nlp  machine-learning  neural-network  deep-learning  randomized-algorithms  machine-learning  beginner  career  xgboost  loss-function  neural-network  software-recommendation  naive-bayes-classifier  classification  scikit-learn  feature-selection  r  random-forest  cross-validation  data-mining  python  scikit-learn  random-forest  churn  python  clustering  k-means  machine-learning  nlp  sentiment-analysis  machine-learning  programming  python  scikit-learn  nltk  gensim  visualization  data  csv  neural-network  deep-learning  descriptive-statistics  machine-learning  supervised-learning  text-mining  orange  data  parameter-estimation  python  pandas  scraping  r  clustering  k-means  unsupervised-learning 

1
এনএলপি - "স্টপ" শব্দটি কেন নয়?
আমি টপিক মডেলিংয়ের আগে স্টপ শব্দগুলি সরিয়ে দেওয়ার চেষ্টা করছি। আমি লক্ষ্য করেছি যে কিছু প্রত্যাখ্যানমূলক শব্দগুলি (না, কখনও নয়, কিছুই নয় ..) সাধারণত স্টপ শব্দ হিসাবে বিবেচিত হয়। উদাহরণস্বরূপ, এনএলটিকে, স্পেসি এবং স্কেলারন তাদের স্টপ ওয়ার্ড তালিকায় "না" অন্তর্ভুক্ত করে। তবে, যদি আমরা নীচের এই বাক্যগুলি থেকে "না" সরিয়ে …

5
সামুদ্রিক হটম্যাপটি আরও বড় করুন
আমি corr()একটি আসল df এর বাইরে একটি df তৈরি করি । corr()Df প্রয়োগ আউট 70 এক্স 70 এসে তা হিটম্যাপ ঠাহর করা অসম্ভব ... sns.heatmap(df)। যদি আমি এটি প্রদর্শনের চেষ্টা করি corr = df.corr(), টেবিলটি স্ক্রিনের সাথে খাপ খায় না এবং আমি সমস্ত সম্পর্কিততা দেখতে পাচ্ছি। dfএটির আকার নির্বিশেষে পুরো …
17 visualization  pandas  plotting  machine-learning  neural-network  svm  decision-trees  svm  efficiency  python  linear-regression  machine-learning  nlp  topic-model  lda  named-entity-recognition  naive-bayes-classifier  association-rules  fuzzy-logic  kaggle  deep-learning  tensorflow  inception  classification  feature-selection  feature-engineering  machine-learning  scikit-learn  tensorflow  keras  encoding  nlp  text-mining  nlp  rnn  python  neural-network  feature-extraction  machine-learning  predictive-modeling  python  r  linear-regression  clustering  r  ggplot2  neural-network  neural-network  training  python  neural-network  deep-learning  rnn  predictive-modeling  databases  sql  programming  distribution  dataset  cross-validation  neural-network  deep-learning  rnn  machine-learning  machine-learning  python  deep-learning  data-mining  tensorflow  visualization  tools  sql  embeddings  orange  feature-extraction  unsupervised-learning  gan  machine-learning  python  data-mining  pandas  machine-learning  data-mining  bigdata  apache-spark  apache-hadoop  deep-learning  python  convnet  keras  aggregation  clustering  k-means  r  random-forest  decision-trees  reference-request  visualization  data  pandas  plotting  neural-network  keras  rnn  theano  deep-learning  tensorflow  inception  predictive-modeling  deep-learning  regression  sentiment-analysis  nlp  encoding  deep-learning  python  scikit-learn  lda  convnet  keras  predictive-modeling  regression  overfitting  regression  svm  prediction  machine-learning  similarity  word2vec  information-retrieval  word-embeddings  neural-network  deep-learning  rnn 

1
আমার কয়টি এলএসটিএম সেল ব্যবহার করা উচিত?
আমার ব্যবহার করা উচিত ন্যূনতম, সর্বাধিক এবং "যুক্তিসঙ্গত" পরিমাণগুলির সাথে সম্পর্কিত কোনও নিয়ামক (বা প্রকৃত নিয়ম) কি আছে? বিশেষত আমি টেনসরফ্লো এবং num_unitsসম্পত্তি থেকে বেসিকএলএসটিএমসেল সম্পর্কিত করছি । অনুগ্রহ করে ধরে নিই যে আমার দ্বারা শ্রেণিবদ্ধকরণের সমস্যা রয়েছে: t - number of time steps n - length of input vector …
12 rnn  machine-learning  r  predictive-modeling  random-forest  python  language-model  sentiment-analysis  encoding  machine-learning  deep-learning  neural-network  dataset  caffe  classification  xgboost  multiclass-classification  unbalanced-classes  time-series  descriptive-statistics  python  r  clustering  machine-learning  python  deep-learning  tensorflow  machine-learning  python  predictive-modeling  probability  scikit-learn  svm  machine-learning  python  classification  gradient-descent  regression  research  python  neural-network  deep-learning  convnet  keras  python  tensorflow  machine-learning  deep-learning  tensorflow  python  r  bigdata  visualization  rstudio  pandas  pyspark  dataset  time-series  multilabel-classification  machine-learning  neural-network  ensemble-modeling  kaggle  machine-learning  linear-regression  cnn  convnet  machine-learning  tensorflow  association-rules  machine-learning  predictive-modeling  training  model-selection  neural-network  keras  deep-learning  deep-learning  convnet  image-classification  predictive-modeling  prediction  machine-learning  python  classification  predictive-modeling  scikit-learn  machine-learning  python  random-forest  sampling  training  recommender-system  books  python  neural-network  nlp  deep-learning  tensorflow  python  matlab  information-retrieval  search  search-engine  deep-learning  convnet  keras  machine-learning  python  cross-validation  sampling  machine-learning 

3
বৈজ্ঞানিক গণনার জন্য সেরা ভাষা [বন্ধ]
বন্ধ । এই প্রশ্নটি আরও ফোকাস করা প্রয়োজন । এটি বর্তমানে উত্তর গ্রহণ করছে না। এই প্রশ্নটি উন্নত করতে চান? প্রশ্নটি আপডেট করুন যাতে এটি কেবলমাত্র এই পোস্টটি সম্পাদনা করে একটি সমস্যার উপর দৃষ্টি নিবদ্ধ করে । 5 বছর আগে বন্ধ । দেখে মনে হয় বেশিরভাগ ভাষায় বেশ কয়েকটি বৈজ্ঞানিক …
10 efficiency  statistics  tools  knowledge-base  machine-learning  neural-network  deep-learning  optimization  hyperparameter  machine-learning  time-series  categorical-data  logistic-regression  python  visualization  bigdata  efficiency  classification  binary  svm  random-forest  logistic-regression  data-mining  sql  experiments  bigdata  efficiency  performance  scalability  distributed  bigdata  nlp  statistics  education  knowledge-base  definitions  machine-learning  recommender-system  evaluation  efficiency  algorithms  parameter  efficiency  scalability  sql  statistics  visualization  knowledge-base  education  machine-learning  r  python  r  text-mining  sentiment-analysis  machine-learning  machine-learning  python  neural-network  statistics  reference-request  machine-learning  data-mining  python  classification  data-mining  bigdata  usecase  apache-hadoop  map-reduce  aws  education  feature-selection  machine-learning  machine-learning  sports  data-formats  hierarchical-data-format  bigdata  apache-hadoop  bigdata  apache-hadoop  python  visualization  knowledge-base  classification  confusion-matrix  accuracy  bigdata  apache-hadoop  bigdata  efficiency  apache-hadoop  distributed  machine-translation  nlp  metadata  data-cleaning  text-mining  python  pandas  machine-learning  python  pandas  scikit-learn  bigdata  machine-learning  databases  clustering  data-mining  recommender-system 

2
Word2vec এ শব্দের ভেক্টরের বৈশিষ্ট্য
আমি অনুভূতি বিশ্লেষণ করার চেষ্টা করছি। শব্দগুলিকে শব্দ ভেক্টরগুলিতে রূপান্তর করার জন্য আমি word2vec মডেলটি ব্যবহার করছি। ধরা যাক 'বাক্য' নামের একটি তালিকায় আমার সমস্ত বাক্য রয়েছে এবং আমি এই বাক্যগুলিকে নীচে ওয়ার্ড টুভেচ করে দিচ্ছি: model = word2vec.Word2Vec(sentences, workers=4 , min_count=40, size=300, window=5, sample=1e-3) আমি যেহেতু ভেক্টর শব্দের কাছে …

3
সেন্টিমেন্ট বিশ্লেষণ টিউটোরিয়াল
আমি অনুভূতি বিশ্লেষণ এবং যে কোনও ভাষা (আর, পাইথন ইত্যাদি) ব্যবহার করে কীভাবে এটি প্রয়োগ করব তা বোঝার চেষ্টা করছি। আমি জানতে চাই যে টিউটোরিয়ালের জন্য ইন্টারনেটে কোনও ভাল জায়গা আছে যা আমি অনুসরণ করতে পারি। আমি গুগল করেছিলাম, তবে আমি খুব বেশি সন্তুষ্ট হইনি কারণ সেগুলি টিউটোরিয়াল নয় বরং …
আমাদের সাইট ব্যবহার করে, আপনি স্বীকার করেছেন যে আপনি আমাদের কুকি নীতি এবং গোপনীয়তা নীতিটি পড়েছেন এবং বুঝতে পেরেছেন ।
Licensed under cc by-sa 3.0 with attribution required.