প্রশ্ন ট্যাগ «threshold»

3
একটি উদাহরণ: বাইনারি ফলাফলের জন্য গ্ল্যামনেট ব্যবহার করে লাসো রিগ্রেশন
আমি লাসো রিগ্রেশন সহ যেখানে আমার আগ্রহের ফলাফলটি দ্বিধাহীন তা ব্যবহার glmnetকরে ধকল শুরু করছি । আমি নীচে একটি ছোট মক ডেটা ফ্রেম তৈরি করেছি: age <- c(4, 8, 7, 12, 6, 9, 10, 14, 7) gender <- c(1, 0, 1, 1, 1, 0, 1, 0, 0) bmi_p <- c(0.86, …
77 r  self-study  lasso  regression  interpretation  anova  statistical-significance  survey  conditional-probability  independence  naive-bayes  graphical-model  r  time-series  forecasting  arima  r  forecasting  exponential-smoothing  bootstrap  outliers  r  regression  poisson-distribution  zero-inflation  genetic-algorithms  machine-learning  feature-selection  cart  categorical-data  interpretation  descriptive-statistics  variance  multivariate-analysis  covariance-matrix  r  data-visualization  generalized-linear-model  binomial  proportion  pca  matlab  svd  time-series  correlation  spss  arima  chi-squared  curve-fitting  text-mining  zipf  probability  categorical-data  distance  group-differences  bhattacharyya  regression  variance  mean  data-visualization  variance  clustering  r  standard-error  association-measure  somers-d  normal-distribution  integral  numerical-integration  bayesian  clustering  python  pymc  nonparametric-bayes  machine-learning  svm  kernel-trick  hyperparameter  poisson-distribution  mean  continuous-data  univariate  missing-data  dag  python  likelihood  dirichlet-distribution  r  anova  hypothesis-testing  statistical-significance  p-value  rating  data-imputation  censoring  threshold 

4
শ্রেণিবিন্যাস সম্ভাবনার প্রান্তিকতা
আমার সাধারণভাবে শ্রেণিবিন্যাস সম্পর্কিত একটি প্রশ্ন আছে। চ শ্রেণিবদ্ধ হতে দিন, যা কিছু তথ্য ডি প্রদত্ত সম্ভাবনার সংকলনকে আউটপুট দেয় সাধারণভাবে, কেউ বলবে: ভাল, যদি পি (সি | ডি)> ০.০, আমরা একটি শ্রেণি নির্ধারণ করব, অন্যথায় 0 (এটি বাইনারি হতে দিন) শ্রেণীবিন্যাস)। আমার প্রশ্নটি হ'ল আমি যদি জানতে পারি যে …

5
লজিস্টিক রিগ্রেশন সম্পর্কিত দার্শনিক প্রশ্ন: কেন সর্বোপরি প্রান্তিক মান প্রশিক্ষিত হয় না?
সাধারণত লজিস্টিক রিগ্রেশন, আমরা একটি মডেল ফিট এবং প্রশিক্ষণ সেট কিছু পূর্বাভাস পেতে। তারপরে আমরা সেই প্রশিক্ষণের পূর্বাভাসগুলি ( এখানে কিছু জাতীয় ) ক্রস-বৈধকরণ এবং আরওসি বক্ররেখার মতো কোনও কিছুর উপর ভিত্তি করে অনুকূল থ্রোসোল্ড মানটি নির্ধারণ করি। আমরা কেন আসল মডেলের মধ্যে দোরের ক্রস-বৈধকরণকে একত্রিত করি না এবং পুরো …

1
এফ 1 অনুকূল থ্রেশহোল্ড কী? কিভাবে এটি গণনা?
আমি আর-তে h2o.glm () ফাংশনটি ব্যবহার করেছি যা ফলাফলের অন্যান্য পরিসংখ্যানের সাথে ফলাফলের জন্য একটি অবিচ্ছিন্ন টেবিল দেয়। কন্টিনজেন্সি টেবিলটি শীর্ষে রয়েছে " এফ 1 অনুকূল থ্রেশহোল্ডের উপর ভিত্তি করে ক্রস ট্যাব " উইকিপিডিয়া F1 স্কোর বা এফ স্কোরকে নির্ভুলতা এবং পুনর্বিবেচনার সুরেলা উপায় হিসাবে সংজ্ঞায়িত করে। তবে যথার্থতা এবং …
13 threshold 

3
বৈশিষ্ট্য ভেক্টরের অতিরিক্ত মাত্রার পরিবর্তে এসভিএমের পক্ষপাতিত্ব শব্দটি আলাদাভাবে অনুমান করা হয় কেন?
এসভিএম-এর সর্বোত্তম হাইপারপ্লেনটি সংজ্ঞাযুক্ত: w⋅x+b=0,w⋅x+b=0,\mathbf w \cdot \mathbf x+b=0, যেখানে থ্রেশোল্ড প্রতিনিধিত্ব করে। আমরা কিছু ম্যাপিং যদি যা কিছু জায়গা ইনপুট স্থান মানচিত্র , আমরা স্থান SVM বর্ণনা করতে পারেন , যেখানে অনুকূল hiperplane হবে:bbbϕϕ\mathbf \phiZZZZZZ w⋅ϕ(x)+b=0.w⋅ϕ(x)+b=0.\mathbf w \cdot \mathbf \phi(\mathbf x)+b=0. যাইহোক, আমরা সর্বদা ম্যাপিং সংজ্ঞায়িত করতে পারি যাতে …
11 svm  threshold 

2
আর র‌্যান্ডমফোরেস্টে শ্রেণিবিন্যাসের জন্য প্রান্তিক পরিবর্তন কীভাবে করবেন?
সমস্ত প্রজাতি বিতরণ মডেলিং সাহিত্যের পরামর্শ দেয় যে সম্ভাবনাগুলি (উদাহরণস্বরূপ, র‌্যান্ডমফোরেস্টস) ছাড়িয়ে এমন একটি মডেল ব্যবহার করে কোনও প্রজাতির উপস্থিতি / অনুপস্থিতির পূর্বাভাস দেওয়ার সময়, প্রান্তিক সম্ভাব্যতার পছন্দ বাছাই করা যার দ্বারা একটি প্রজাতিকে উপস্থিতি বা অনুপস্থিতি হিসাবে শ্রেণীবদ্ধ করা গুরুত্বপূর্ণ এবং এক হওয়া উচিত সর্বদা 0.5 এর ডিফল্ট উপর …

5
অসাধারণ সনাক্তকরণের জন্য স্বয়ংক্রিয় প্রান্তিক সংকল্প
আমি সময়ের ব্যয়বহুল স্কোরগুলির সাথে কাজ করছি (পটভূমিটি কম্পিউটার নেটওয়ার্কগুলিতে বিচ্ছিন্নভাবে সনাক্তকরণ)। প্রতি মিনিটে, আমি স্কোর যা আমাকে বলে যে নেটওয়ার্কের বর্তমান অবস্থা কতটা "অপ্রত্যাশিত" বা অস্বাভাবিক। যত বেশি স্কোর, ততটাই অস্বাভাবিক বর্তমান অবস্থা। 5 এর কাছাকাছি স্কোরগুলি তাত্ত্বিকভাবে সম্ভব তবে প্রায় কখনও হয় না।এক্সটি∈ [ 0 , 5 ]xt∈[0,5]x_t …
আমাদের সাইট ব্যবহার করে, আপনি স্বীকার করেছেন যে আপনি আমাদের কুকি নীতি এবং গোপনীয়তা নীতিটি পড়েছেন এবং বুঝতে পেরেছেন ।
Licensed under cc by-sa 3.0 with attribution required.