প্রশ্ন ট্যাগ «approximation-hardness»

আনুমানিকতার শক্ততা aka

7
পি-তে রানটাইম সীমা কি নির্ধারণযোগ্য? (উত্তর: না)
নিম্নলিখিত প্রশ্নটি সিদ্ধান্তগ্রহণযোগ্য কিনা তা জিজ্ঞাসিত প্রশ্নটি: সমস্যা একটি পূর্ণসংখ্যা দেওয়া এবং টুরিং মেশিন পি হতে প্রতিশ্রুত, এর রানটাইম হয় ইনপুট দৈর্ঘ্য সম্মান সঙ্গে ?এম এম ও ( এন কে ) এনটkkএমMMএমMM ও ( এন)ট)O(nk){O}(n^k)এনnn "হ্যাঁ", "না" বা "উন্মুক্ত" এর একটি সংকীর্ণ উত্তর গ্রহণযোগ্য (তথ্যসূত্র, প্রমাণ স্কেচ, বা বর্তমান জ্ঞানের …

9
এনপি-হার্ড সমস্যার জন্য অনুকূল লোভী অ্যালগরিদম
লোভ, একটি ভাল শব্দ অভাবের জন্য, ভাল। প্রারম্ভিক অ্যালগরিদম কোর্সে শেখানো প্রথম অ্যালগরিদমিক দৃষ্টান্তগুলির মধ্যে একটি হ'ল লোভী দৃষ্টিভঙ্গি । লোভী পদ্ধতির ফলাফল পি তে অনেক সমস্যার জন্য সহজ এবং স্বজ্ঞাত আলগোরিদিমগুলিতে আসে More আরও মজার বিষয়, কিছু এনপি-হার্ড সমস্যার জন্য সুস্পষ্ট এবং প্রাকৃতিক লোভী / স্থানীয় অ্যালগরিদম ফলাফল (সম্ভাব্য) …

4
পিসিপি উপপাদ্য ব্যতিরেকে আনুমানিকতার কঠোরতা
পিসিপি উপপাদ্যের একটি গুরুত্বপূর্ণ অ্যাপ্লিকেশনটি হ'ল এটি "আনুমানিকতার কঠোরতা" ধরণের ফলাফল দেয়। কিছু তুলনামূলক সহজ ক্ষেত্রে কেউ পিসিপি ছাড়াই এ জাতীয় কঠোরতা প্রমাণ করতে পারে। যাইহোক, পিসিপি উপপাদ্যটি ব্যবহার করে প্রথমে সান্নিধ্য ফলাফলের কঠোরতা প্রমাণিত হয়েছিল এমন কোনও ঘটনা আছে কি না, ফলাফলটি আগে জানা ছিল না, তবে পরে আরও …

4
এনপি! = CoNP ধরে ধরে অনুমানের কঠোরতা
আনুমানিক ফলাফলের কঠোরতা প্রমাণ করার জন্য দুটি সাধারণ অনুমান হ'ল এবং ইউনিক গেমস কনজেকচার। এন পি ≠ সি ও এন পি ধরে ধরে অনুমানের ফলাফলের কোনও কঠোরতা আছে কি? আমি সমস্যা খোঁজ করছি একটি যেমন যে "এটা আনুমানিক কঠিন একটি একটি ফ্যাক্টর মধ্যে α যদি না এন পি = গ …

1
গ্যাপ -৩ এসএটি এনপি-সম্পূর্ণ এমনকি 3 সিএনএফ সূত্রের জন্য যেখানে ভেরিয়েবলগুলির জুড়ি গড়ের চেয়ে উল্লেখযোগ্যভাবে বেশি দফাতে উপস্থিত হয় না?
এই প্রশ্নের, একটি 3CNF সূত্র একটি CNF সূত্র যেখানে প্রতিটি দফা জড়িত মানে ঠিক তিন স্বতন্ত্র ভেরিয়েবল। ধ্রুব 0 0 s <1 এর জন্য, গ্যাপ -3 এস্যাট এস নিম্নলিখিত প্রতিশ্রুতি সমস্যা: গ্যাপ -3 এসএটি এর দৃষ্টান্ত : একটি 3 সিএনএফ সূত্র φ হ্যাঁ-প্রতিশ্রুতি : satis সন্তোষজনক। কোন-প্রতিশ্রুতি : কোন সত্য …

4
এনপি অপ্টিমাইজেশান সমস্যার জন্য সেরা আনুমানিকতা এবং কঠোরতার ফলাফলগুলির সংমিশ্রণ
আপনি কি এনপি অপ্টিমাইজেশান সমস্যায় উত্সর্গীকৃত কোনও আধুনিক উইকি তাদের সেরা আনুমানিকতা এবং কঠোরতার ফলাফলের সাথে জানেন? মতামতের ভিত্তিতে, মনে হয় এটি নিরাপদ যে এই ধরণের কোনও সংস্থান নেই (দুটি ঘনিষ্ঠ বিকল্পের জন্য এই প্রশ্নের শেষ দেখুন)। - 8 ই ফেব্রুয়ারী যোগ করা হয়েছে। যেহেতু বিগত দুই দশকে প্রচুর ফলাফল …

3
স্বাচ্ছন্দ্য যখন গণনা কঠিন?
ধরা যাক আমরা নিম্নরূপে ওজনযুক্ত রঙগুলি গণনা করে যথাযথ রঙগুলি গণনা করার সমস্যাটি শিথিল করেছি: প্রতিটি যথাযথ রঙিন ওজন 1 পায় এবং প্রতিটি অনুপযুক্ত রঙের ওজন যেখানে সি কিছু ধ্রুবক এবং ভি শেষ প্রান্তগুলির সাথে প্রান্তগুলির সংখ্যা একই হয়। সি হিসাবে 0 যাওয়ার সাথে সাথে, এটি সঠিক রঙগুলি গণনা হ্রাস …

3
আনুমানিকের কঠোরতা - সংযোজন ত্রুটি
এখানে একটি সমৃদ্ধ সাহিত্য আছে এবং কমপক্ষে একটি খুব ভাল বই এনপি-হার্ড সমস্যার জন্য গুণগত ত্রুটির প্রসঙ্গে (যেমন ভার্টেক্স কভারের জন্য 2-আনুমানিককরণ হ'ল ইউজিসি অনুমানযোগ্য) প্রবন্ধের নিকটতম ফলাফলগুলির সুনির্দিষ্ট ফলাফলগুলি নির্ধারণ করে। এটিতে এপিএক্স, পিটিএএস এবং এর মতো আরও ভালভাবে বোঝা অনুমানের জটিলতা ক্লাস অন্তর্ভুক্ত রয়েছে। অ্যাডিটিভ ত্রুটি বিবেচনা করা …

1
ইউজি-কঠোরতা কী এবং অনন্য গেমস অনুমানের ভিত্তিতে এনপি-কঠোরতা থেকে এটি কীভাবে আলাদা?
অনেকগুলি অযৌক্তিক ফলাফল রয়েছে যা অনন্য গেমস অনুমানের উপর নির্ভর করে। উদাহরণ স্বরূপ, অনন্য গেম অনুমান ধরে নেওয়া যাক, এটি একটি ফ্যাক্টর মধ্যে সর্বাধিক কাটা সমস্যা সূক্ষ পরিমাপক দ্বারা NP-কঠিন আর কোনো ধ্রুবক জন্য আর > আর জি ডব্লিউ । (এখানে আর জিডব্লু = 0.878… গোমানস-উইলিয়ামসন অ্যালগরিদমের আনুমানিক অনুপাত)) তবে …

2
মেশিনের সময় নির্ধারণের জন্য বহুপদী সময় আনুমানিক আলগোরিদিম: কতগুলি উন্মুক্ত সমস্যা বাকি আছে?
১৯৯ Pet সালে, পেট্রা শিউরম্যান এবং জারহার্ড জে ওয়েইঞ্জার "মেশিনের সময় নির্ধারণের জন্য বহুপদী সময় আনুমানিক আলগোরিদিম: দশটি উন্মুক্ত সমস্যা" পত্রিকা প্রকাশ করেছিলেন । তার পর থেকে, আমার জ্ঞানের সেরা হিসাবে, পর্যালোচনাগুলি যা সমস্যার জন্য একই একই তালিকা নিয়ে উদ্বেগ প্রকাশ করবে তা প্রকাশিত হয়নি। এইভাবে এটি দুর্দান্ত এবং কার্যকর …

4
কঠোরতা পর্যায়ের রূপান্তরের উদাহরণ
ধরুন আমরা একটি সমস্যা একটি রিয়েল-মূল্যবান প্যারামিটার পি যা "সহজ" দ্বারা স্থিতিমাপ আছে সমাধানের জন্য যখন এবং "কঠিন" যখন জন্য কিছু মান , ।p=p0p=p0p=p_0p=p1p=p1p=p_1p0p0p_0p1p1p_1 একটি উদাহরণ গ্রাফগুলিতে স্পিন কনফিগারেশন গণনা। ওজনযুক্ত সঠিক রং, স্বতন্ত্র সেটগুলি গণনা করা হয়, যথাক্রমে হার্ড, পটস এবং আইজিং মডেলগুলির পার্টিশন ফাংশনগুলির সাথে সামঞ্জস্যপূর্ণ, যা "উচ্চ …

3
দাবিযুক্ত সুবিধাগুলি সত্ত্বেও কেন ডিফারেন্সিয়াল আনুষঙ্গিক অনুপাতটি মানকগুলির সাথে তুলনা করে ভালভাবে অধ্যয়ন করা হয় না?
একটি স্ট্যান্ডার্ড আনুমানিক তত্ত্ব আছে যেখানে আনুমানিক অনুপাতটি ( উদ্দেশ্যগুলির সাথে সমস্যাগুলির জন্য ), - কিছু অ্যালগরিদম এবং দ্বারা প্রত্যাবর্তিত মান - একটি সর্বোত্তম মান। এবং অন্য একটি তত্ত্ব, পার্থক্যজনিত সান্নিধ্যের যেখানে অনুপাত , \ ওমেগা - প্রদত্ত উদাহরণের জন্য একটি সম্ভাব্য সমাধানের সবচেয়ে খারাপ মান। লেখক এই তত্ত্ব দাবি …

3
? এর জন্য
পটভূমি : সুভাষ খোতের মূল ইউজিসি পেপারে ( পিডিএফ ), তিনি প্রদত্ত সিএসপি উদাহরণটি কোনও ত্রৈমাসিক বর্ণমালার চেয়ে সমস্ত-সমান নয় (আ, খ, সি) ফর্মের সমস্ত সীমাবদ্ধতা রয়েছে কিনা তা সিদ্ধান্ত নেওয়ার জন্য ইউজি-কঠোরতা প্রমাণ করেছেন 1 - সীমাবদ্ধতার বা আছে কিনা satisying কোন বরাদ্দকরণ অস্তিত্ব ইচ্ছামত ছোট সীমাবদ্ধতার, ।8ϵϵ\epsilonϵ>089+ϵ89+ϵ\frac{8}{9}+\epsilonϵ>0ϵ>0\epsilon > …

1
এক্সওআর গেটগুলি ব্যবহার করে সবচেয়ে ছোট সার্কিট আকার
ধরা যাক, আমাদের n বুলিয়ান ভেরিয়েবল x_1, ..., x_n এবং m ফাংশন y_1 এর সেট দেওয়া হবে ... y_m যেখানে প্রতিটি y_i এই ভেরিয়েবলগুলির একটি (প্রদত্ত) সাবসেটের XOR। লক্ষ্যটি হ'ল এই সমস্ত y_1 ... y_m ফাংশনগুলি গণনা করার জন্য আপনাকে ন্যূনতম সংখ্যক এক্সওআর ক্রিয়াকলাপ গণনা করতে হবে। নোট করুন যে …

2
Subexponental সময়ে আনুমানিক
বহুবর্ষীয় সময়ে এনপি সম্পূর্ণ সমস্যার জন্য আনুমানিক অ্যালগরিদম এবং তাত্পর্যপূর্ণ সময়ে সঠিক অ্যালগরিদম সম্পর্কে অধ্যয়ন রয়েছে। ফর্ম 2nδ22nδ22^{n^{\delta_2}} যেখানে সুস্পষ্ট সম্ভাব্য সময়ে এনপি সম্পূর্ণ সমস্যার জন্য প্রায় অ্যালগরিদম সম্পর্কে অধ্যয়ন আছে δ2∈(0,1)δ2∈(0,1)\delta_2\in(0,1)? আমি বিশেষত স্বচ্ছ এক্সপেরিয়েন্সিয়াল সময়ে স্বতন্ত্রতা নম্বর এবং ক্লাখ নম্বর এর মতো বহুমুখী সময়ের নিকটবর্তী সমস্যাগুলির সম্পর্কে যা …

আমাদের সাইট ব্যবহার করে, আপনি স্বীকার করেছেন যে আপনি আমাদের কুকি নীতি এবং গোপনীয়তা নীতিটি পড়েছেন এবং বুঝতে পেরেছেন ।
Licensed under cc by-sa 3.0 with attribution required.