প্রশ্ন ট্যাগ «moments»

মুহুর্তগুলি এলোমেলো ভেরিয়েবলের বৈশিষ্ট্যগুলির সংক্ষিপ্তসার (যেমন, অবস্থান, স্কেল)। ভগ্নাংশের মুহুর্তগুলির জন্যও ব্যবহার করুন।

1
উচ্চতর-অর্ডার কুল্যান্ট এবং মুহুর্তের নাম বৈচিত্র, স্কিউনেস এবং কুর্তোসিসের বাইরে
পদার্থবিদ্যা বা গাণিতিক বলবিজ্ঞান, একটি সময়-ভিত্তিক অবস্থান থেকে শুরু বেগ, ত্বরণ,: সময় থেকে সম্মান সঙ্গে ডেরাইভেটিভস মাধ্যমে পরিবর্তনের এক গ্রহণ করে হার হেঁচকা (3 য় অর্ডার), সহসা লাফাইয়া উঠা (4 র্থ অর্ডার)।x(t)x(t)x(t) কিছু ইতিমধ্যে সপ্তম ক্রম পর্যন্ত ডেরিভেটিভ জন্য স্ন্যাপ, কর্কশ, পপ প্রস্তাব করেছে। যান্ত্রিক পদার্থবিজ্ঞান এবং স্থিতিস্থাপকতা তত্ত্ব থেকে …

1
তথ্যসূত্র: উল্টো সিডিএফ এর লেজ
আমি প্রায় নিশ্চিত যে আমি ইতিমধ্যে পরিসংখ্যানগুলিতে নিম্নলিখিত ফলাফলটি দেখেছি তবে কোথায় তা আমি মনে করতে পারি না। তাহলে XXX একটি ইতিবাচক দৈব চলক এবং E(X)&lt;∞E(X)&lt;∞\mathbb{E}(X)<\infty তারপর εF−1(1−ε)→0εF−1(1−ε)→0\varepsilon F^{-1}(1-\varepsilon) \to 0 যখন ε→0+ε→0+\varepsilon\to 0^+ , যেখানে FFF এর সিডিএফ হয় XXX । সমতা ব্যবহার করে জ্যামিতিকভাবে দেখতে সহজ এবং সংহত …

1
মুহুর্ত তৈরির কাজ এবং ফুরিয়ার ট্রান্সফর্ম?
একটি মুহূর্ত উত্পন্ন ফাংশন একটি সম্ভাব্য ঘনত্ব ফাংশন একটি ফুরিয়ার রূপান্তর ? অন্য কথায়, একটি মুহূর্ত উত্পন্ন ফাংশন কি কেবল একটি এলোমেলো ভেরিয়েবলের সম্ভাব্যতা ঘনত্ব বিতরণের বর্ণালী রেজোলিউশন, অর্থাত্ কোনও প্যারামিটারের পরিবর্তে এর প্রশস্ততা, পর্ব এবং ফ্রিকোয়েন্সি অনুসারে কোনও ফাংশনকে বৈশিষ্ট্যযুক্ত করার সমতুল্য উপায় ? যদি তা হয় তবে আমরা …
10 moments  mgf  cumulants 

1
আর লিনিয়ার রিগ্রেশন শ্রেণিবদ্ধ পরিবর্তনশীল "লুকানো" মান
এটি কেবলমাত্র একটি উদাহরণ যা আমি বেশ কয়েকবার এসেছি, সুতরাং আমার কোনও নমুনা ডেটা নেই। আরে লিনিয়ার রিগ্রেশন মডেল চালাচ্ছেন: a.lm = lm(Y ~ x1 + x2) x1একটি অবিচ্ছিন্ন পরিবর্তনশীল। x2শ্রেণীবদ্ধ এবং এর তিনটি মান রয়েছে যেমন "নিম্ন", "মাঝারি" এবং "উচ্চ"। তবে আর দ্বারা প্রদত্ত আউটপুটটি এরকম কিছু হবে: summary(a.lm) …
10 r  regression  categorical-data  regression-coefficients  categorical-encoding  machine-learning  random-forest  anova  spss  r  self-study  bootstrap  monte-carlo  r  multiple-regression  partitioning  neural-networks  normalization  machine-learning  svm  kernel-trick  self-study  survival  cox-model  repeated-measures  survey  likert  correlation  variance  sampling  meta-analysis  anova  independence  sample  assumptions  bayesian  covariance  r  regression  time-series  mathematical-statistics  graphical-model  machine-learning  linear-model  kernel-trick  linear-algebra  self-study  moments  function  correlation  spss  probability  confidence-interval  sampling  mean  population  r  generalized-linear-model  prediction  offset  data-visualization  clustering  sas  cart  binning  sas  logistic  causality  regression  self-study  standard-error  r  distributions  r  regression  time-series  multiple-regression  python  chi-squared  independence  sample  clustering  data-mining  rapidminer  probability  stochastic-processes  clustering  binary-data  dimensionality-reduction  svd  correspondence-analysis  data-visualization  excel  c#  hypothesis-testing  econometrics  survey  rating  composite  regression  least-squares  mcmc  markov-process  kullback-leibler  convergence  predictive-models  r  regression  anova  confidence-interval  survival  cox-model  hazard  normal-distribution  autoregressive  mixed-model  r  mixed-model  sas  hypothesis-testing  mediation  interaction 

1
প্রদত্ত মুহুর্তগুলির সাথে এলোমেলো পরিবর্তনশীল তৈরি করুন
আমি আগে জানি এনএনNকিছু বিতরণের মুহূর্ত। আমি আরও জানি যে আমার বিতরণটি অবিচ্ছিন্ন, অবিমোচনীয় এবং ভাল আকারের (এটি গামা-বিতরণের মতো দেখায়)। এটা কি সম্ভব: কিছু অ্যালগরিদম ব্যবহার করে, এই বিতরণ থেকে নমুনা তৈরি করুন, সীমাবদ্ধ অবস্থার সাথে একই মুহুর্তগুলিতে ঠিক কী হবে? এই সমস্যাটিকে বিশ্লেষণ করে সমাধান করুন? আমি বুঝতে …

1
0-সেন্সরযুক্ত মাল্টিভারিয়েট স্বাভাবিকের অর্থ এবং তারতম্য কী?
যাক করা হবে না । (সর্বাধিক গণিত সাথে এর গড় এবং ম্যাট্রিক্স কী ?Z∼N(μ,Σ)Z∼N(μ,Σ)Z \sim \mathcal N(\mu, \Sigma)RdRd\mathbb R^dZ+=max(0,Z)Z+=max(0,Z)Z_+ = \max(0, Z) এটি সামনে আসে উদাহরণস্বরূপ, কারণ আমরা যদি একটি গভীর নেটওয়ার্কের অভ্যন্তরে ReLU অ্যাক্টিভেশন ফাংশনটি ব্যবহার করি এবং সিএলটি এর মাধ্যমে ধরে নিই যে কোনও প্রদত্ত স্তরের ইনপুটগুলি প্রায় …

1
সিএলটি-র উদাহরণ যখন মুহুর্তের অস্তিত্ব থাকে না
বিবেচনা Xn=⎧⎩⎨1−12kw.p. (1−2−n)/2w.p. (1−2−n)/2w.p. 2−k for k&gt;nএক্সএন={1WP (1-2-এন)/2-1WP (1-2-এন)/22টWP 2-ট জন্য ট&gt;এনX_n = \begin{cases} 1 & \text{w.p. } (1 - 2^{-n})/2\\ -1 & \text{w.p. } (1 - 2^{-n})/2\\ 2^k & \text{w.p. } 2^{-k} \text{ for } k > n\\ \end{cases} আমাকে এটি দেখাতে হবে যদিও এর অসীম মুহূর্ত রয়েছে, n−−√(X¯n)→dN(0,1)এন(এক্স¯এন)→ঘএন(0,1)\sqrt{n}(\bar{X}_n) …

1
দুটি গাউশিয়ান এলোমেলো ভেক্টরগুলির অভ্যন্তরীণ পণ্যটির মুহুর্ত তৈরির ফাংশন
কেউ দয়া করে পরামর্শ দিতে পারেন যে আমি কীভাবে দুটি গাউসিয়ান এলোমেলো ভেক্টরের অভ্যন্তরীণ উত্পাদনের মুহুর্ত তৈরির ফাংশনটি গণনা করতে পারি, একে অপরকে আলাদা করে হিসাবে বিতরণ করা হয় ? এর জন্য কি কিছু মানক ফলাফল পাওয়া যায়? যে কোনও পয়েন্টার অত্যন্ত প্রশংসা করা হয়।N(0,σ2)N(0,σ2)\mathcal N(0,\sigma^2)

1
প্রতিসম বিতরণের কেন্দ্রীয় মুহুর্তগুলি
আমি এটি দেখানোর চেষ্টা করছি যে একটি প্রতিসম বিতরণের কেন্দ্রীয় মুহূর্ত: বিজোড় সংখ্যার জন্য শূন্য। সুতরাং উদাহরণস্বরূপ তৃতীয় কেন্দ্রীয় মুহূর্তআমি show show দেখানোর চেষ্টা করে শুরু করেছিআমি নিশ্চিত না এখান থেকে কোথায় যাব, কোন পরামর্শ? এটি প্রমাণ করার আরও ভাল উপায় আছে কি?fx(a+x)=fx(a−x)fx(a+x)=fx(a−x){\bf f}_x{\bf (a+x)} = {\bf f}_x{\bf(a-x)}E[(X−u)3]=0.E[(X−u)3]=0.{\bf E[(X-u)^3] = …
আমাদের সাইট ব্যবহার করে, আপনি স্বীকার করেছেন যে আপনি আমাদের কুকি নীতি এবং গোপনীয়তা নীতিটি পড়েছেন এবং বুঝতে পেরেছেন ।
Licensed under cc by-sa 3.0 with attribution required.