প্রশ্ন ট্যাগ «cox-model»

কক্স আনুপাতিক বিপত্তি রিগ্রেশন বেঁচে থাকার বিশ্লেষণের জন্য একটি আধা-প্যারাম্যাট্রিক পদ্ধতি। কোনও বিতরণ ফর্মটি ধরে নেওয়ার দরকার নেই, কেবল যে কোনও কোভারিয়েটে এক-ইউনিট বৃদ্ধির প্রভাব একটি ধ্রুবক একাধিক।

3
ইংরেজিতে কক্স আনুপাতিক ঝুঁকিপূর্ণ মডেল থেকে বিপদ অনুপাত কীভাবে রিপোর্ট করবেন?
আমার বোধগম্যতা হল যে কক্স আনুপাতিক ঝুঁকিপূর্ণ মডেল থেকে একটি বিপত্তি অনুপাত একটি প্রদত্ত ফ্যাক্টরের বিপদ হারের প্রভাবকে একটি রেফারেন্স গোষ্ঠীর সাথে তুলনা করে। পরিসংখ্যান জানে না এমন দর্শকদের কাছে আপনি কীভাবে এই প্রতিবেদন করবেন? একটি উদাহরণ বাক্য চেষ্টা করার চেষ্টা করুন। বলুন যে আমরা লোকেরা পালঙ্ক কেনার কতক্ষণ আগে …

1
জিবিএম প্যাকেজ বনাম ক্যারেট জিবিএম ব্যবহার করে
আমি ব্যবহার করে মডেল টিউন করছি caret, তবে gbmপ্যাকেজটি ব্যবহার করে আবার মডেল চালাচ্ছি । caretপ্যাকেজটি ব্যবহার করে gbmএবং আউটপুট একই হওয়া উচিত এটি আমার বোধগম্য । যাইহোক, কেবলমাত্র একটি দ্রুত পরীক্ষা চালানো data(iris)মূল্যায়ন মেট্রিক হিসাবে আরএমএসই এবং আর ^ 2 ব্যবহার করে প্রায় 5% এর মডেলের মধ্যে একটি তাত্পর্য …

1
ফল্ট মডেলগুলি (আর কক্স্ফ ব্যবহার করে) থেকে পূর্বাভাস প্রাপ্ত বেঁচে থাকা কার্ভগুলি কীভাবে উত্পন্ন করা যায়?
দুর্বল শর্ত [বেঁচে থাকার প্যাকেজ ব্যবহার করে] সহ কক্স আনুপাতিক ঝুঁকিপূর্ণ মডেলের জন্য ভবিষ্যদ্বাণীিত বেঁচে থাকা ফাংশনটি গণনা করতে চাই। দেখা যাচ্ছে যে যখন দুর্বল শর্তাবলী মডেলটিতে থাকে, তখন ভবিষ্যদ্বাণী করা বেঁচে থাকা ফাংশনটি গণনা করা যায় না। ## Example require(survival) data(rats) ## Create fake weight set.seed(90989) rats$weight<-runif(nrow(rats),0.2,0.9) ## Cox …

2
আর এর সাথে কক্স মডেলে বেসলাইন বিপজ্জনক ক্রিয়াকলাপটি কীভাবে অনুমান করা যায়
সময় নির্ভর নির্ভর কক্স মডেলটিতে আমার বেসলাইন বিপজ্জনক ক্রিয়াকলাপ অনুমান করা দরকারλ0(t)λ0(t)\lambda_0(t) λ(t)=λ0(t)exp(Z(t)′β)λ(t)=λ0(t)exp⁡(Z(t)′β)\lambda(t) = \lambda_0(t) \exp(Z(t)'\beta) আমি বেঁচে থাকার কোর্সটি গ্রহণ করার সময় আমার মনে আছে যে ক্রমবর্ধমান বিপদ ক্রিয়াকলাপের সরাসরি ডেরাইভেটিভ ( ) ভাল অনুমানকারী হবে না কারণ ব্রেসলো অনুমানকারী একটি পদক্ষেপ ফাংশন দেয়।λ0(t)dt=dΛ0(t)λ0(t)dt=dΛ0(t)\lambda_0(t) dt = d\Lambda_0(t) সুতরাং, আর-তে …
13 r  survival  cox-model 

2
ডান সেন্সর দিয়ে কীভাবে খেলনা বেঁচে থাকার (ইভেন্টের সময়) ডেটা তৈরি করা যায়
আমি খেলনা বেঁচে থাকার (ইভেন্ট টু ইভেন্ট) ডেটা তৈরি করতে চাই যা সঠিকভাবে সেন্সর করা হয়েছে এবং আনুপাতিক বিপত্তি এবং ধ্রুবক বেসলাইন বিপত্তি সহ কিছু বিতরণ অনুসরণ করে। আমি নিম্নলিখিত হিসাবে ডেটা তৈরি করেছি, তবে সিমুলেটেড ডেটাতে কক্স আনুপাতিক বিপদ মডেল লাগানোর পরে সত্যিকারের মানগুলির কাছাকাছি থাকা আনুমানিক বিপদ অনুপাতগুলি …

1
ফিশারের নির্ভুল পরীক্ষা এবং হাইপারজিম্যাট্রিক বিতরণ
আমি ফিশারদের সঠিক পরীক্ষাটি আরও ভালভাবে বুঝতে চেয়েছিলাম, তাই আমি নীচের খেলনাটির উদাহরণটি প্রস্তুত করেছি, যেখানে f এবং m পুরুষ এবং মহিলা এর সাথে মিলে যায় এবং n এবং y এর সাথে "সোডা সেবন" এর সাথে মিলে যায়: > soda_gender f m n 0 5 y 5 0 স্পষ্টতই, এটি …

1
শোওনফিল্ডের অবশিষ্টাংশ
কক্স আনুপাতিক ঝুঁকিপূর্ণ মডেলটিতে অনেকগুলি ভেরিয়েবলগুলি রয়েছে, যদি শোএনফিল্ডের অবশিষ্টাংশগুলি কোনও একটি ভেরিয়েবলের জন্য সমতল না হয়, তবে এটি কি পুরো মডেলটিকে অকার্যকর করে দেয় বা কেবলমাত্র খারাপভাবে সম্পাদনকারী ভেরিয়েবলকে উপেক্ষা করা যেতে পারে? এটি হ'ল, অন্যান্য ভেরিয়েবলের জন্য সহগগুলি ব্যাখ্যা করুন, তবে খারাপ ফলাফল সম্পাদনকারী ভেরিয়েবলের জন্য ফলিত সহগগুলি …

2
কোন কক্স পিএইচ মডেল থেকে পূর্বাভাসিত বিপদের হারগুলি কীভাবে গণনা করবেন?
আমার কাছে নিম্নলিখিত কক্স পিএইচ মডেল রয়েছে: (সময়, ইভেন্ট) ~ এক্স + ওয়াই + জেড আমি পূর্বাভাস বিপত্তি পেতে চাই হার (ঝ বিপত্তি হার কথা বলছি না নির্দিষ্ট মান দেওয়া বিপত্তি অনুপাত) X, Y, Z। আমি জানি মুহাজ আর আর প্যাকেজ পর্যবেক্ষণ করা বিপদের হারগুলি গণনা করতে পারে তবে আমি …
11 r  survival  hazard  cox-model 

4
কোনও হাসপাতাল ভিত্তিক আরসিটিতে থাকা ডেটা দৈর্ঘ্যের বিশ্লেষণ কীভাবে করা যায়?
আরসিটি থেকে হাসপাতালের থাকার দৈর্ঘ্য (এলওএস) ডেটা বিশ্লেষণের সর্বোত্তম উপায় সম্পর্কে sensক্যমত্য আছে কিনা তা জানতে আগ্রহী আমি। এটি সাধারণত একটি খুব ডান স্কিউ বিতরণ, যার মাধ্যমে বেশিরভাগ রোগীদের কয়েক দিনের মধ্যে এক সপ্তাহের মধ্যে এক সপ্তাহ থেকে অব্যাহতি দেওয়া হয়, তবে বাকি রোগীদের বেশ অপ্রত্যাশিত (এবং কখনও কখনও বেশ …

2
কক্স পিএইচ বিশ্লেষণ এবং কোভারিয়েট সিলেকশনে প্রোপেনসিটি স্কোর ওজন
সময়ের-থেকে-ইভেন্ট বেঁচে থাকার ডেটা কক্স আনুপাতিক বিপদ মডেলিংয়ের সময় প্রপেনসিটি স্কোর ওয়েটিং (আইপিটিডাব্লু) সম্পর্কিত: আমার কাছে সম্ভাব্য রেজিস্ট্রি ডেটা রয়েছে যেখানে আমরা কোনও ওষুধের চিকিত্সার প্রভাবটি দেখতে আগ্রহী যা বেশিরভাগ ক্ষেত্রে রোগীরা ইতিমধ্যে বেসলাইন গ্রহণ করছিল। অতএব আমি নিশ্চিত নই কিভাবে কীভাবে ডেটা বিশ্লেষণ করা যায়। সম্ভাব্যভাবে, কিছু বেসলাইন ভেরিয়েবলগুলি …

1
বেঁচে থাকার বিশ্লেষণের জন্য সিপিএইচ, ত্বরণী ব্যর্থতার সময় মডেল বা নিউরাল নেটওয়ার্কগুলির তুলনা
আমি বেঁচে থাকার বিশ্লেষণে নতুন এবং আমি সম্প্রতি শিখেছি যে এটির একটি নির্দিষ্ট লক্ষ্য দেওয়ার বিভিন্ন উপায় রয়েছে। আমি এই পদ্ধতির প্রকৃত বাস্তবায়ন এবং যথাযথতায় আগ্রহী। আমাকে time তিহ্যবাহী কক্স প্রপোরশনাল-হ্যাজার্ডস , এক্সিলারেটেড ব্যর্থতার সময় মডেল এবং নিউরাল নেটওয়ার্কগুলি (মাল্টিলেয়ার পার্সেপট্রন) উপস্থাপিত হয়ে রোগীর বেঁচে থাকার জন্য সময়, স্থিতি এবং …

2
অবিকল কিভাবে আর এর কক্স্ফ () বারবার ব্যবস্থা গ্রহণ করে?
প্রসঙ্গ আমি বুঝতে চেষ্টা করছি যে কীভাবে আর এর কক্স্ফ () প্রজাদের (বা রোগী / গ্রাহক যদি আপনি চান তবে) বারবার প্রবেশগুলি গ্রহণ করে এবং পরিচালনা করে। কেউ কেউ এই লম্বা ফর্ম্যাটটিকে কল করেন, আবার কেউ একে 'বারবার ব্যবস্থা' বলে থাকেন। উদাহরণস্বরূপ দেখুন ডেটা সেটটিতে উত্তর বিভাগে আইডি কলাম অন্তর্ভুক্ত …

2
কোন প্রতিকূল অনুপাত এবং বিপদ অনুপাতের মধ্যে কোনও কার্যকরী পার্থক্য রয়েছে?
লজিস্টিক রিগ্রেশনে, 2 এর একটি বিভেদ অনুপাতের অর্থ হ'ল ভবিষ্যদ্বাণীকের এক-ইউনিট বৃদ্ধি পেয়ে ইভেন্টটি 2 বার বেশি সম্ভাব্য। কক্স রিগ্রেশনে, 2 এর একটি বিপদ অনুপাত মানে ভবিষ্যদ্বাণীকের এক-ইউনিট বৃদ্ধি পেয়ে ইভেন্টটি প্রতিটি সময়ে প্রায় দ্বিগুণ হয়ে থাকে। এগুলি কি বাস্তবে একই জিনিস নয়? তাহলে আমরা যদি লজিস্টিক রিগ্রেশন-এর প্রতিকূল অনুপাত …

1
আর লিনিয়ার রিগ্রেশন শ্রেণিবদ্ধ পরিবর্তনশীল "লুকানো" মান
এটি কেবলমাত্র একটি উদাহরণ যা আমি বেশ কয়েকবার এসেছি, সুতরাং আমার কোনও নমুনা ডেটা নেই। আরে লিনিয়ার রিগ্রেশন মডেল চালাচ্ছেন: a.lm = lm(Y ~ x1 + x2) x1একটি অবিচ্ছিন্ন পরিবর্তনশীল। x2শ্রেণীবদ্ধ এবং এর তিনটি মান রয়েছে যেমন "নিম্ন", "মাঝারি" এবং "উচ্চ"। তবে আর দ্বারা প্রদত্ত আউটপুটটি এরকম কিছু হবে: summary(a.lm) …
10 r  regression  categorical-data  regression-coefficients  categorical-encoding  machine-learning  random-forest  anova  spss  r  self-study  bootstrap  monte-carlo  r  multiple-regression  partitioning  neural-networks  normalization  machine-learning  svm  kernel-trick  self-study  survival  cox-model  repeated-measures  survey  likert  correlation  variance  sampling  meta-analysis  anova  independence  sample  assumptions  bayesian  covariance  r  regression  time-series  mathematical-statistics  graphical-model  machine-learning  linear-model  kernel-trick  linear-algebra  self-study  moments  function  correlation  spss  probability  confidence-interval  sampling  mean  population  r  generalized-linear-model  prediction  offset  data-visualization  clustering  sas  cart  binning  sas  logistic  causality  regression  self-study  standard-error  r  distributions  r  regression  time-series  multiple-regression  python  chi-squared  independence  sample  clustering  data-mining  rapidminer  probability  stochastic-processes  clustering  binary-data  dimensionality-reduction  svd  correspondence-analysis  data-visualization  excel  c#  hypothesis-testing  econometrics  survey  rating  composite  regression  least-squares  mcmc  markov-process  kullback-leibler  convergence  predictive-models  r  regression  anova  confidence-interval  survival  cox-model  hazard  normal-distribution  autoregressive  mixed-model  r  mixed-model  sas  hypothesis-testing  mediation  interaction 

2
ক্যাপলান-মেয়ের রেখাচিত্রগুলি কক্স রিগ্রেশন ছাড়া অন্যথায় বলে মনে হচ্ছে
আর এ, আমি ক্যান্সার রোগীদের বেঁচে থাকার ডেটা বিশ্লেষণ করছি। আমি ক্রসভিলেটেড এবং অন্যান্য জায়গায় বেঁচে থাকার বিশ্লেষণ সম্পর্কে খুব সহায়ক জিনিসগুলি পড়ছি এবং মনে করি আমি কীভাবে কক্স রিগ্রেশন ফলাফল ব্যাখ্যা করতে পারি। যাইহোক, একটি ফলাফল এখনও আমাকে বাগ ... আমি বেঁচে থাকার বনাম লিঙ্গ তুলনা করছি। কাপলান-মেয়ের রেখাচিত্রগুলি …

আমাদের সাইট ব্যবহার করে, আপনি স্বীকার করেছেন যে আপনি আমাদের কুকি নীতি এবং গোপনীয়তা নীতিটি পড়েছেন এবং বুঝতে পেরেছেন ।
Licensed under cc by-sa 3.0 with attribution required.