প্রশ্ন ট্যাগ «survival»

বেঁচে থাকার বিশ্লেষণ মডেলগুলি ইভেন্ট ডেটার সময়, সাধারণত মৃত্যুর সময় বা ব্যর্থতার সময়। সেন্সর করা ডেটা বেঁচে থাকার বিশ্লেষণের জন্য একটি সাধারণ সমস্যা।

8
একটি বিদ্যমান ভেরিয়েবল (গুলি) এর সাথে সংজ্ঞায়িত পারস্পরিক সম্পর্কযুক্ত একটি এলোমেলো ভেরিয়েবল তৈরি করুন
একটি সিমুলেশন অধ্যয়নের জন্য আমাকে এলোমেলো ভেরিয়েবলগুলি তৈরি করতে হবে যা বিদ্যমান ভেরিয়েবল সাথে একটি পূর্বনির্ধারিত (জনসংখ্যা) পারস্পরিক সম্পর্ক দেখায় ।ওয়াইYY আমি Rপ্যাকেজগুলিতে সন্ধান করেছি copulaএবং CDVineযা প্রদত্ত নির্ভরতা কাঠামোর সাথে এলোমেলো মাল্টিভারিয়েট বিতরণ তৈরি করতে পারে। যাইহোক, বিদ্যমান ভেরিয়েবলের ফলে ফলাফলগুলির মধ্যে একটি স্থির করা সম্ভব নয়। বিদ্যমান ক্রিয়াকলাপগুলির …

8
কোনও ব্যর্থতা না থাকলে ব্যর্থতার সম্ভাবনা কীভাবে বলব?
আমি ভাবছিলাম যে যদি 1 বছরের জন্য আমাদের 100,000 পণ্য ক্ষেত্রের জন্য রয়েছে এবং কোনও ব্যর্থতা নেই তবে কোনও কিছুতে ব্যর্থ হওয়ার (সম্ভাব্য পণ্য) সম্ভাবনা বলার উপায় আছে কি? পরবর্তী 10,000 টি পণ্যের একটি বিক্রি হওয়ার সম্ভাবনা কী?

7
পাইথনে বেঁচে থাকার বিশ্লেষণ সরঞ্জামগুলি [বন্ধ]
আমি ভাবছি অজগরটির জন্য এমন কোনও প্যাকেজ রয়েছে যা বেঁচে থাকার বিশ্লেষণ সম্পাদন করতে সক্ষম। আমি আর এ টিকে থাকার প্যাকেজটি ব্যবহার করছি তবে আমার কাজটি অজগরকে পোর্ট করতে চাই।
46 survival  python 

5
কক্স রিগ্রেশন মধ্যে পূর্বাভাস
আমি একটি মাল্টিভারিয়েট কক্স রিগ্রেশন করছি, আমার আমার উল্লেখযোগ্য স্বতন্ত্র ভেরিয়েবল এবং বিটা মান রয়েছে। মডেলটি আমার ডেটার সাথে খুব ভাল ফিট করে। এখন, আমি আমার মডেলটি ব্যবহার করতে এবং একটি নতুন পর্যবেক্ষণের বেঁচে থাকার পূর্বাভাস দিতে চাই। কক্স মডেল দিয়ে এটি কীভাবে করা যায় তা আমি অস্পষ্ট। লিনিয়ার বা …

10
বেঁচে থাকার সময়গুলি কেন তাড়াতাড়ি বিতরণ করা হবে বলে ধরে নেওয়া হয়?
আমি ইউসিএলএ আইডিআরএতে এই পোস্টটি থেকে বেঁচে থাকার বিশ্লেষণ শিখছি এবং ১.২.১ বিভাগে বিভক্ত হয়েছি। টিউটোরিয়ালটি বলে: ... যদি বেঁচে থাকার সময়গুলি তাত্পর্যপূর্ণভাবে বিতরণ করা হত তবে বেঁচে থাকার সময়টি পর্যবেক্ষণের সম্ভাবনা ... বেঁচে থাকার সময়গুলি কেন তাড়াতাড়ি বিতরণ করা হবে বলে ধরে নেওয়া হয়? এটা আমার কাছে খুব অপ্রাকৃত …


3
আমার ডেটা কোন বিতরণ অনুসরণ করে?
আসুন আমরা বলি যে আমার 1000 টি উপাদান রয়েছে এবং আমি কতবার এই ব্যর্থতা লগ করেছি এবং প্রতিবার তারা কোনও ব্যর্থতা লগ করেছে তার তথ্য সংগ্রহ করেছি, সমস্যাটি সমাধান করতে আমার দলকে কতটা সময় লেগেছে তাও আমি পর্যবেক্ষণ করছি। সংক্ষেপে, আমি এই 1000 টি উপাদানগুলির প্রতিটি মেরামত করার জন্য (সেকেন্ডে) …

5
মেশিন লার্নিংয়ের শ্রেণিবদ্ধ / নেস্টেড ডেটা কীভাবে মোকাবেলা করবেন
আমি আমার সমস্যাটি একটি উদাহরণ দিয়ে ব্যাখ্যা করব। ধরুন আপনি কোনও ব্যক্তির আয়ের ভবিষ্যদ্বাণী করতে চান এমন কয়েকটি বৈশিষ্ট্য দেওয়া হয়েছে: {বয়স, লিঙ্গ, দেশ, অঞ্চল, শহর} আপনার মতো প্রশিক্ষণ ডেটাসেট রয়েছে train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, 37,41,31,50), Gender=factor(c("M","F","M","F", "M","F","M","F", "F","F","F","M")), Income=c(31,42,71,65, 50,51,101,38, …
29 regression  machine-learning  multilevel-analysis  correlation  dataset  spatial  paired-comparisons  cross-correlation  clustering  aic  bic  dependent-variable  k-means  mean  standard-error  measurement-error  errors-in-variables  regression  multiple-regression  pca  linear-model  dimensionality-reduction  machine-learning  neural-networks  deep-learning  conv-neural-network  computer-vision  clustering  spss  r  weighted-data  wilcoxon-signed-rank  bayesian  hierarchical-bayesian  bugs  stan  distributions  categorical-data  variance  ecology  r  survival  regression  r-squared  descriptive-statistics  cross-section  maximum-likelihood  factor-analysis  likert  r  multiple-imputation  propensity-scores  distributions  t-test  logit  probit  z-test  confidence-interval  poisson-distribution  deep-learning  conv-neural-network  residual-networks  r  survey  wilcoxon-mann-whitney  ranking  kruskal-wallis  bias  loss-functions  frequentist  decision-theory  risk  machine-learning  distributions  normal-distribution  multivariate-analysis  inference  dataset  factor-analysis  survey  multilevel-analysis  clinical-trials 

1
স্বাধীনতার ডিগ্রি কি একটি অ-পূর্ণসংখ্যার সংখ্যা হতে পারে?
আমি যখন জিএএম ব্যবহার করি তখন এটি আমাকে অবশিষ্ট ডিএফ (কোডের শেষ লাইন)। ওটার মানে কি? জিএএম উদাহরণ ছাড়িয়ে যান, সাধারণভাবে, স্বাধীনতার ডিগ্রির সংখ্যাটি একটি অ-পূর্ণসংখ্যার সংখ্যা হতে পারে?26.626.626.6 > library(gam) > summary(gam(mpg~lo(wt),data=mtcars)) Call: gam(formula = mpg ~ lo(wt), data = mtcars) Deviance Residuals: Min 1Q Median 3Q Max -4.1470 …
27 r  degrees-of-freedom  gam  machine-learning  pca  lasso  probability  self-study  bootstrap  expected-value  regression  machine-learning  linear-model  probability  simulation  random-generation  machine-learning  distributions  svm  libsvm  classification  pca  multivariate-analysis  feature-selection  archaeology  r  regression  dataset  simulation  r  regression  time-series  forecasting  predictive-models  r  mean  sem  lavaan  machine-learning  regularization  regression  conv-neural-network  convolution  classification  deep-learning  conv-neural-network  regression  categorical-data  econometrics  r  confirmatory-factor  scale-invariance  self-study  unbiased-estimator  mse  regression  residuals  sampling  random-variable  sample  probability  random-variable  convergence  r  survival  weibull  references  autocorrelation  hypothesis-testing  distributions  correlation  regression  statistical-significance  regression-coefficients  univariate  categorical-data  chi-squared  regression  machine-learning  multiple-regression  categorical-data  linear-model  pca  factor-analysis  factor-rotation  classification  scikit-learn  logistic  p-value  regression  panel-data  multilevel-analysis  variance  bootstrap  bias  probability  r  distributions  interquartile  time-series  hypothesis-testing  normal-distribution  normality-assumption  kurtosis  arima  panel-data  stata  clustered-standard-errors  machine-learning  optimization  lasso  multivariate-analysis  ancova  machine-learning  cross-validation 

2
বেঁচে থাকার বিশ্লেষণে, কেন আমরা সম্পূর্ণ প্যারামেট্রিক মডেলের পরিবর্তে আধা-প্যারামেট্রিক মডেল (কক্স আনুপাতিক বিপত্তি) ব্যবহার করব?
এই প্রশ্নটি গণিত স্ট্যাক এক্সচেঞ্জ থেকে স্থানান্তরিত হয়েছিল কারণ ক্রস ভ্যালিডেটে উত্তর দেওয়া যেতে পারে। 6 বছর আগে স্থানান্তরিত । আমি কক্স প্রোপোরেন্টাল হ্যাজার্ডস মডেলটি অধ্যয়ন করছি এবং বেশিরভাগ পাঠ্যে এই প্রশ্নটি সমালোচিত। কক্স আংশিক সম্ভাবনা পদ্ধতি ব্যবহার করে হ্যাজার্ড ফাংশনের সহগকে ফিট করার প্রস্তাব করেছিল, তবে কেন সর্বাধিক সম্ভাবনা …

2
বায়েশিয়ান বেঁচে থাকার বিশ্লেষণ: অনুগ্রহ করে আমাকে কাপলান মেয়ারের জন্য একটি পূর্ববর্তী লিখুন!
সাথে ইভেন্টগুলি সহ ডান-সেন্সর করা পর্যবেক্ষণগুলি বিবেচনা করুন । সমর্থ ব্যক্তি সংখ্যা সময়ে আমি হয় এন আমি এবং ইভেন্টগুলি সংখ্যা সময়ে আমি হয় ঘ আমি ।t1,t2,…t1,t2,…t_1, t_2, \dotsiiininin_iiiididid_i কাপলান-মেয়ার বা পণ্য অনুমানকারী যখন এমএলই হিসাবে স্বভাবতই উত্থাপিত হয় যখন বেঁচে থাকার ক্রিয়াটি একটি ধাপ ফাংশন । সম্ভাবনা তারপর এল ( …

4
প্রান্ত ক্ষেত্রে যথাযথতা এবং পুনরুদ্ধার জন্য সঠিক মান কি?
যথার্থতা হিসাবে সংজ্ঞায়িত করা হয়: p = true positives / (true positives + false positives) এটি সঠিক যে, 0 true positivesএবং false positivesকাছে যাওয়ার সাথে সাথে নির্ভুলতা 1 এ পৌঁছেছে? প্রত্যাহার জন্য একই প্রশ্ন: r = true positives / (true positives + false negatives) আমি বর্তমানে একটি পরিসংখ্যানগত পরীক্ষা বাস্তবায়ন …
20 precision-recall  data-visualization  logarithm  references  r  networks  data-visualization  standard-deviation  probability  binomial  negative-binomial  r  categorical-data  aggregation  plyr  survival  python  regression  r  t-test  bayesian  logistic  data-transformation  confidence-interval  t-test  interpretation  distributions  data-visualization  pca  genetics  r  finance  maximum  probability  standard-deviation  probability  r  information-theory  references  computational-statistics  computing  references  engineering-statistics  t-test  hypothesis-testing  independence  definition  r  censoring  negative-binomial  poisson-distribution  variance  mixed-model  correlation  intraclass-correlation  aggregation  interpretation  effect-size  hypothesis-testing  goodness-of-fit  normality-assumption  small-sample  distributions  regression  normality-assumption  t-test  anova  confidence-interval  z-statistic  finance  hypothesis-testing  mean  model-selection  information-geometry  bayesian  frequentist  terminology  type-i-and-ii-errors  cross-validation  smoothing  splines  data-transformation  normality-assumption  variance-stabilizing  r  spss  stata  python  correlation  logistic  logit  link-function  regression  predictor  pca  factor-analysis  r  bayesian  maximum-likelihood  mcmc  conditional-probability  statistical-significance  chi-squared  proportion  estimation  error  shrinkage  application  steins-phenomenon 

4
বেঁচে থাকার বিশ্লেষণ: ক্রমাগত বনাম পৃথক সময়
বেঁচে থাকার বিশ্লেষণে সময়কে অবিচ্ছিন্ন বা বিযুক্ত হিসাবে বিবেচনা করবেন কীভাবে সিদ্ধান্ত নেবেন সে সম্পর্কে আমি বিভ্রান্ত। বিশেষত, আমি বাচ্চাদের- এবং পরিবার-স্তরের ভেরিয়েবলগুলি সনাক্ত করতে বাঁচানোর বিশ্লেষণ ব্যবহার করতে চাই, যা ছেলেদের বনাম মেয়েদের বেঁচে থাকার ক্ষেত্রে (5 বছর বয়স পর্যন্ত) তাদের প্রভাবের ক্ষেত্রে সবচেয়ে বড় তাত্পর্য রয়েছে। বাচ্চা বেঁচে …
20 survival  ties 

2
-তে একটি কক্স্ফ মডেলের সংক্ষিপ্তসারে দেওয়া "
-তে একটি কক্স্ফ মডেলের সংক্ষিপ্তসারে দেওয়া আর 2 মানটি কী ? উদাহরণ স্বরূপ,আর2R2R^2 Rsquare= 0.186 (max possible= 0.991 ) আমি মূর্খতার সাথে এটিকে একটি মান হিসাবে একটি পাণ্ডুলিপি অন্তর্ভুক্ত করেছি এবং পর্যালোচক এটিতে লাফ দিয়েছিলেন যে তিনি কক্স মডেলের জন্য নির্মিত ক্লাসিক লিনিয়ার রিগ্রেশন থেকে আর 2 পরিসংখ্যানের এনালগ সম্পর্কে …

3
ট্রেন ও পরীক্ষায় বিভক্ত হওয়ার আগে বা পরে অনুগতি?
আমার কাছে এন ~ 5000 দিয়ে একটি ডেটা সেট রয়েছে এবং কমপক্ষে একটি গুরুত্বপূর্ণ ভেরিয়েবলের প্রায় 1/2 অনুপস্থিত। মূল বিশ্লেষণ পদ্ধতিটি কক্স আনুপাতিক বিপদ হবে। আমি একাধিক অনুমান ব্যবহার করার পরিকল্পনা করছি plan আমি ট্রেন এবং পরীক্ষার সেটেও বিভক্ত হব। আমার কি ডেটা বিভক্ত করা উচিত এবং তারপরে পৃথকভাবে ইমপুট …

আমাদের সাইট ব্যবহার করে, আপনি স্বীকার করেছেন যে আপনি আমাদের কুকি নীতি এবং গোপনীয়তা নীতিটি পড়েছেন এবং বুঝতে পেরেছেন ।
Licensed under cc by-sa 3.0 with attribution required.